ABC
POMP CIEPŁA
DLA PROJEKTANTA
08/2018
Jedna z najnowocześniejszych fabryk pomp ciepła w Europie

Galmet to największy polski producent techniki grzewczej z 35-letnią historią. Na ponad 45 000 m² hali produkcyjnych pracuje ponad 720 doświadczonych i wykwalifikowanych pracowników oraz najnowocześniejsze maszyny w zautomatyzowanych liniach produkcyjnych. Dzięki połączeniu doskonałości technologicznej naszych wyrobów z kreatywnością i postępem wnoszonym przez wykształconą młodą kadrę, pomocą i wsparciem doradców technicznych na każdym etapie realizacji inwestycji, zapewняmy naszym klientom optymalne, oszczędne i ekologiczne, rozwiązania grzewcze precyzyjnie dopasowane do ich indywidualnych potrzeb.

Wszystkie nasze produkty mogą być konfigurowane w najbardziej wydajne hybrydowe systemy grzewcze.
SPIS TREŚCI

1. **WSTĘP** .. 6
 1.1. Definicja pompy ciepła ... 6
 1.2. Rodzaje pompy ciepła .. 6
 1.3. Obszary zastosowań pomp ciepła Galmet 8

2. **SPRĘŻARKOWA ELEKTRYCZNA POMPA CIEPŁA - PODSTAWY** 8
 2.1. Podstawowe komponenty pompy ciepła 9
 2.2. Dolne źródła pomp ciepła ... 10
 2.3. Efektywność pompy ciepła ... 10
 2.4. Sezonowa efektywność pompy ciepła 12
 2.5. Porównywanie różnych pomp ciepła 12

3. **POMPY CIEPŁA POWIETRZE-WODA** 13
 3.1. Powietrze jako dolne źródło pomp ciepła 13
 3.2. Pompy ciepła powietrze-woda do c.o. i c.w.u. - Airmax² 13
 3.2.1. Zasada działania .. 14
 3.2.2. Opis techniczny pomp ciepła Galmet - Airmax² 14
 3.2.3. Dane techniczne pomp ciepła Galmet - Airmax² 19
 3.2.4. Charakterystyki pomp ciepła Galmet - Airmax² 24
3.3. Pompy ciepła powietrze-woda do c.w.u. ... 28
 3.3.1. Zasada działania ... 28
 3.3.2. Opis techniczny pompy ciepła do c.w.u. ze zbiornikiem - Spectra, Basic ... 30
 3.3.3. Dane techniczne pompy ciepła – Spectra ... 33
 3.3.4. Dane techniczne pompy ciepła – Basic ... 37
 3.3.5. Opis techniczny pompy ciepła do c.w.u. bez zbiornika – Small ... 43
 3.3.6. Dane techniczne pompy ciepła – Small ... 44
 3.3.7. Elementy wentylacyjne przeznaczone do pomp ciepła powietrze-woda do c.w.u. ... 46

4. POMPY CIEPŁA ZIEMIA-WODA ... 48
 4.1. Grunt jako dolne źródło ... 48
 4.2. Pompa ciepła ziemia-woda do c.o. i c.w.u. - Maxima ... 49
 4.2.1. Zasada działania ... 49
 4.2.2. Opis techniczny pomp ciepła Galmet – Maxima ... 50
 4.2.3. Dane techniczne pomp ciepła Galmet – Maxima ... 54
 4.2.4. Charakterystyki pomp ciepła Galmet – Maxima ... 60
 4.3. Dolne źródła pomp gruntowych ... 72
 4.3.1. Sonda pionowa ... 72
 4.3.2. Wymiennik poziomy ... 73

5. PROJEKTOWANIE UKŁADÓW Z POMPAMI CIEPŁA DO C.W.U. ... 74

6. PROJEKTOWANIE UKŁADÓW Z POMPAMI CIEPŁA DO C.O. I C.W.U. ... 78
 6.1. Tryby pracy pompy ciepła, punkt biwalencyjny ... 80
6.2. Projektowanie układów z powietrzną pompą ciepła do c.o. i c.w.u. - Airmax

6.2.1. Wyznaczanie temperatury biwalencyjnej ... 83
6.2.2. Przykład zastosowania Airmax® 15 GT w różnych budynkach ... 84
6.2.3. Analiza doboru pomp ciepła Airmax® do przykładowego obiektu ... 85
6.2.4. Airmax® - wymagania instalacyjne ... 86
6.2.5. Airmax® - dobór zasobnika c.w.u. (MAXI, MAXI PLUS) 88
6.2.6. Airmax® - dobór bufora wody grzewczej SG(B) .. 89
6.2.7. Airmax® - dobór zbiornika kombinowanego SG(K) .. 90
6.2.8. Airmax® - wstępny szacunkowy dobór systemu z powietrzną pompą ciepła dla standardowego budynku 91

6.3. Projektowanie układów z gruntową pompą ciepła do c.o. i c.w.u. - Maxima .. 92

6.3.1. Analiza doboru pomp ciepła Maxima do przykładowego obiektu ... 92
6.3.2. Maxima - wymagania instalacyjne ... 93
6.3.3. Maxima - dobór zasobnika c.w.u. (MAXI, MAXI PLUS) 95
6.3.4. Maxima - dobór bufora wody grzewczej SG(B) .. 96
6.3.5. Maxima - dobór zbiornika kombinowanego SG(K) .. 97
6.3.6. Maxima - wstępny szacunkowy dobór systemu z gruntową pompą ciepła dla standardowego budynku 98

6.4. Projektowanie dolnego źródła pompy ciepła Maxima ... 100
6.4.1. Dobór sondy pionowej, wytyczne projektowe ... 100
6.4.2. Dobór wymiennika poziomego, wytyczne projektowe ... 102

7. PODSUMOWANIE .. 105

8. HYBRYDOWE SYSTEMY GRZEWCZE GALMET .. 108

Autor: mgr inż. Julia Sobaszek
1. WSTĘP

Rynek pomp ciepła w Polsce i na świecie dynamicznie się rozwija. Wynika to z faktu, iż pompa ciepła jest niezawodnym, bezobsługowym i oszczędnym źródłem ogrzewania. W czasach gdy coraz bardziej rośnie świadomość ekologiczna, przywiązuje się coraz większą wagę do energooszczędnych rozwiązań wykorzystujących odnawialne źródła energii. Stosując pompę ciepła niwelujemy lokalne zanieczyszczenia (tzw. niską emisję).

By sprawnie poruszać się w tematyce pomp ciepła ważne jest przyswojenie kilku podstawowych pojęć:

- **pompa ciepła powietrze-woda** - urządzenie czerpiące energię z powietrza, a oddające energię do wody.
- **pompa ciepła ziemia-woda** - urządzenie czerpiące energię z gruntu, a oddające energię do wody. Energia z gruntu odbierana jest poprzez wymiennik gruntowy w formie poziomej lub pionowej. Stosuje się również nazewnictwo solanka-woda; glikol-woda.
- **górne źródło** - źródło, do którego pompa ciepła oddaje energię cieplną. W przypadku urządzeń firmy Galmet jest to standardowo woda, będąca czynnikiem grzewczym w instalacji centralnego ogrzewania lub woda użytkowa. Wymiennik pompy ciepła, w którym przekazywana jest energia ciepła nazywany skraplaczem. W produktach firmy Galmet ma on postać wymiennika płytowego lub rury nawiniętej na zbiornik (w przypadku pomp ciepła zintegrowanej ze zbiornikiem do wody użytkowej).
- **dolne źródło** - źródło, z którego pompa ciepła pobiera energię cieplną. W przypadku urządzeń firmy Galmet jest to powietrze lub grunt. Ciepło pobierane jest w wymienniku ciepła zwany parownikiem. W powietrznej pompie ciepła parownik ma postać wymiennika lamelowego, w pompie gruntowej parownik ma podobną budowę do skraplacza, czyli jest postacią wymiennika płytnego. W powietrznej pompie ciepła ciepło dostarczone jest do parownika bezpośrednio z powietrza. Natomiast w pompie ciepła gruntowej, dolnym źródłem jest oczywiście grunt, a ciepło z gruntu jest dostarczone do parownika przez czynnik pośredniczący. Do tego celu stosuje się zazwyczaj glikol propylenowy.
- **punkt pracy urządzenia** - pompy ciepła dla różnych temperatur górnego i dolnego źródła osiągają różne wartości mocy grzewczej, chłodniczej, czy też elektrycznej. Punkt pracy to warunki odniesienia, przy których wyznaczone są parametry urządzenia, opisuje się go zwyczajowo skrótem. Przykładowy punkt pracy powietrznej pompy ciepła: A7W35, „A” z angielskiego „air”, czyli powietrze, „W” – „water” - woda. Oznacza to temperaturę powietrza wlotowego 7°C oraz temperaturę wody na wyjściu z pompy ciepła 35°C. Jeśli chodzi o pompy ciepła ziemia-woda to punkt pracy opisywany jest przykładowo jako B0W55. Z angielskiego „B” pochodzi od „brine” czyli solanka (zwyczajowo glikol bywa nazywany solanką), „W” - „water”, czyli woda. Co analogicznie oznacza temperaturę glikolu na wejściu do pompy ciepła na poziomie 0°C oraz wody na wyjściu z pompy ciepła 55°C.
- **czynnik chłodniczy** - czynnik roboczy termodynamiczny umożliwiający transport ciepła z parownika do skraplacza pompy ciepła, przy realizacji określonych przemian termodynamicznych. Wszystkie pompy ciepła Galmet napelnione są fabrycznie czynnikiem chłodniczym, są urządzeniami hermetycznie zamkniętymi.
- **obszar pracy urządzenia** - zakres temperatur dolnego i górnego źródła w jakim pompa ciepła jest w stanie pracować.

1.1. Definicja pompy ciepła

Urządzenie grzewcze, które przy pomocy dodatkowej energii podnosi temperaturę czynnika roboczego z niskiego na wyższy poziom temperaturowy, taki, by energię tą dało wykorzystać się w celach grzewczych.

Rys. 1. Zasada działania pompy ciepła

1.2. Rodzaje pomp ciepła

Pompy ciepła zależnie od typu i zasady działania można podzielić na:

- **Sprężarkowe elektryczne pompę ciepła** - najbardziej rozwinięte technicznie i najpopularniejsze spośród wszystkich pomp ciepła. Pobierając ciepło ze środowiska (powietrze, grunt) przy dostarczeniu pewnej porcji energii elektrycznej (do sprężarki) są w stanie wygenerować ciepło użyteczne. Jest to urządzenie z typowym obiegiem chłodniczym, który realizowany jest w każdej chłodziarcie domowej. Z tym, że w chłodziarce wykorzystujemy efekt pobierania ciepła z pewnej przestrzeni (komory chłodziarki), natomiast w pompie ciepła wykorzystujemy oddawanie ciepła w górnym źródle.
WSTĘP

Absorpcyjne pompy ciepła - jeden z dwóch typów sorpcyjnych pomp ciepła. Absorpcja to proces, w którym jedna ciecz lub gaz wchłaniany jest przez inną ciecz lub gaz, przy zachowaniu odpowiedniej temperatury i ciśnienia. Jest ona procesem odwracalnym w odpowiednich warunkach. Czynnikiem w tego rodzaju urządzeniach jest zazwyczaj amoniak, a substancją go absorbującą (rozpuszczalnikiem) woda. Najważniejszą różnicą jest brak sprężarki elektrycznej, która zostaje zastąpiona sprężarką termiczną (składającą się z absorbera - absorpcja amoniaku przez wodę, desorbera - oddzielenie amoniaku od wody przy dostarczeniu ciepła np. przez palnik gazowy, pompy, zaworu rozprężającego).

Rys. 2. Sprężarkowe elektryczne pompy ciepła

Rys. 3. Absorpcyjna pompa ciepła
13. Obszary zastosowań pomp ciepła Galmet

Pompy ciepła produkcji Galmet, to urządzenia grzewcze zapewniające ciepło w budownictwie jednorodzinnym i obiektach użyteczności publicznej. Zapewniają ogrzewanie i/lub ciepłą wodę użytkową. Jeśli chodzi o systemy grzewcze to pompa ciepła najefektywniej pracuje w systemach niskotemperaturowych (ogrzewanie płaszczyznowe). Powszechne zastosowanie pomp ciepła do c.w.u. to połączenie ich z kotłem grzewczym, gdyż idealnie się uzupełniają.

2. SPRĘŻARKOWA ELEKTRYCZNA POMPA CIEPŁA - PODSTAWY

Pompa ciepła jest urządzeniem grzewczym realizującym lewobieżny obieg termodynamiczny (obieg Lindego). Obieg jest realizowany przy użyciu czynnika chłodniczego.

Nie każdy czynnik jest odpowiedni do wykorzystania jako czynnik chłodniczy w układach sprężarkowych. Musi on posiadać odpowiednie właściwości termodynamiczne:

- Temperatura wrzenia w cieśnieniu otoczenia powinna być niższa od zera
- Stabilny chemicznie, niepalny, nietoksyczny, niewybuchowy
- Obojętność chemiczna względem materiałów, z których wykonana jest instalacja chłodnicza
- Obieg chłodniczy (patrz Rys. 4) powinien zachodzić przy naciśnieniu, to znaczy w cieśninach wyższych niż atmosferyczne.

Obecnie w pompach ciepła Galmet stosowane są następujące czynniki: R134a, R410A. Odwzorowanie obiegu Lindego przedstawia się najczęściej na wykresie lg p - h (p-ciśnienie, h-entalpia czynnika chłodniczego). Wykres ma trzy obszary: cieczy (100% ciekły czynnik), pary przegrzanej (100% fizy czynnik chłodniczego), pary mokrej (mieszania faz ciekłej i gazowej). Obszar pary mokrej ograniczony jest przez tzw. krzywą nasycenia. W obszarze pod krzywą może zajść przemiana fazowa, a dokładnie odparowanie lub skraplanie. Są to przemiany izobaryczne, czyli zachodzące przy stałym ciśnieniu. Poza obszarem krzywej (będąc w obszarze cieczy lub pary przegrzanej) możemy jedynie chłodzić lub grzać czynnik, nie zmieni on jednak swojej fazy.

Rys. 4. Lewobieżny obieg chłodniczy - Lindego
Podstawowy obieg realizowany jest przy użyciu czterech elementów:

- **Parownika** - przemiana 4-1 - odparowanie czynnika przy dostarczeniu ciepła z otoczenia.
- **Sprężarki** - przemiana 1-2 - sprężanie czynnika przy dostarczeniu energii elektrycznej, efektem czego uzyskuje on odpowiedni poziom temperatury, by przekazać ciepło w górnym źródle.
- **Skraplacza** - przemiana 2-3 - skraplanie czynnika, przez oddawanie energii cieplnej do górnego źródła (np. wody).
- **Elementu rozprężnego** - przemiana 3-4 - rozprężanie czynnika celem obniżenia jego ciśnienia i temperatury, tak by znów był zdolny pobrać ciepło z dolnego źródła w parowniku.

Wracając do obiegu termodynamicznego, sprężarka podnosiła ciśnienie i temperaturę czynnika. Ma on w tym momencie na tyle wysoką temperaturę, że może oddać ją np. do wody zasilającej obieg grzewczy. Zatem wspomniane oddawanie ciepła do górnego źródła zachodzi w skraplaczu. Temperatura czynnika chłodniczego jest wtedy wyższa niż woda, do której oddaje ciepło, inaczej proces nie miałby miejsca. Oddając ciepło obniża się temperatura czynnika, a przez to dochodzi do jego skraplania - zamienia z fazy gazowej w ciekłą. Po oddaniu całego ciepła w górnym źródle czynnik ma wciąż wysokie ciśnienie. Zbyt obniżyć jego ciśnienie, a tym samym temperaturę, tak by znów był zdolny pobrać ciepło z dolnego źródła, stosowany jest wspomniany wyżej efekt dławienia. Realizowany jest on w zaworze rozprężnym. Jest to element zawierający „przewężenie”. Gdy płyn przemierzając kanał napotka przeszkodę w postaci przewężenia, następuje spadek ciśnienia płynu, wiaże się on również ze spadkiem temperatury. To właśnie zjawisko wykorzystane jest w zaworze rozprężnym.

2.1. Podstawowe komponenty pompy ciepła

Wymiennik lamelowy - wymiennik ciepła, który ma na zadanie odebrać ciepło z powietrza. Charakterystyczną cechą tego rodzaju wymienników są lamelki zwiększające powierzchnię wymiany ciepła.

Wymiennik płytowy - pełni funkcję parownika i skraplacza w gruntowej pompie ciepła oraz skraplacza w powietrznej pompie ciepła.

Sprężarka - dostarcza energię do układu podwyższając ciśnienie i temperaturę czynnika chłodniczego. W pompach ciepła Galmet stosowane są sprężarki elektryczne spiralne i rotacyjne.

Rys. 5. Wymiennik lamelowy **Rys. 6. Wymiennik płytowy** **Rys. 7. Sprężarka spiralna** **Rys. 8. Sprężarka rotacyjna**

Wymiennik lamelowy **Wymiennik płytowy** **Sprężarka**

Rys. 9. Schemat sprężania w sprężarce spiralnej
Drugim rodzajem sprężarki jest sprężarka rotacyjna. Sprężanie gazu następuje w komorach powstających dzięki ruchowi wirnika. Przedstawiony na poniższym rysunku tłok wiruje mimośrodowo, przez co objętość komory sprężania staje się coraz mniejsza, aż w punkcie końcowym sprężony gaz opuszcza sprężarkę. Tym samym rozpoczyna się cykl dla nowej porcji gazu.

Rys. 10. Schemat sprężania w sprężarce rotacyjnej

Zawór rozprężny - element dławiący, umożliwiający rozprężenie czynnika chłodniczego. Występują zawory termostatyczne, dla których sygnałem do zmiany położenia jest zmiana ciśnienia w kapilarze (na skutek zmiany temperatury). Natomiast przy zaworze elektronicznym sygnał ten pochodzi od przetworników ciśnienia i czujników temperatury.

Wentylator - element wymuszający przepływ powietrza przez parownik w pompach ciepła pracujących w systemie powietrze-woda.

Sterownik - element zarządzający pracą całego urządzenia. Sterowanie odbywa się na podstawie algorytmu w oparciu o odczyty temperatur, czy też ciśnień.

2.2. Dolne źródła pomp ciepła

Idealne dolne źródło pompy ciepła powinno charakteryzować się stabilną oraz odpowiednio wysoką temperaturą w ciągu całego roku. Musi mieć również zdolność regeneracji, tak by podczas jego eksploatacji nie było problemu ze zbyt małą ilością oddawanej energii. Wymagana jest również jego łatwa dostępność oraz niewyczerpalność.

Powszechne dolne źródła do pomp ciepła to:

- Powietrze - najprostsze do pozyskania ciepło, lecz powietrze zewnętrzne to źródło najbardziej niekoherentne i o najmniej stabilnej temperaturze. Istnieje również możliwość wykorzystywania powietrza z wewnątrz budynków, lecz jedynie w urządzeniach małej mocy (do produkcji c.w.u.).
- Grunt - najbardziej stabilne źródło. Jednak pozyskanie ciepła z gruntu wiąże się z kosztową instalacją wymiennika gruntowego. Realizuje się układy bezpośredniego odparowania czynnika chłodniczego w gruncie lub pośredniego odbierania ciepła przy użyciu czynnika pośredniczącego - glikolu.
- Woda - wykorzystuje się wody gruntowe (realizując dwie studnie: czerpalną i chłonną). Wadą tego rozwiązania może być pojawienie się problemu z chłonnością czy wydajnością studni. Innym sposobem wykorzystania wody jako dolnego źródła są wody powierzchniowe (staw, jezioro), w którym układa się pętle wymiennika poziomego.

2.3. Efektywność pompy ciepła

Energia dostarczana do obiegu w postaci ciepła (w parowniku) pochodzi z odnawialnego źródła (gruntu lub powietrza). Jest to w pełni darmowa energia. Pozostała część dostarczana jest w postaci energii elektrycznej do napędu sprężarki. Wytworzona energia cieplna oddawana jest do górnego źródła w skraplaczu. Stosunek wytworzonej energii ciepłej do dostarczonej energii elektrycznej wyrażany jest współczynnikiem efektywności COP. Współczynnik świadczy o efektywności urządzenia. Im wyższą wartość osiąga, tym więcej uzyskujemy energii cieplnej w stosunku do włożonej elektrycznej.

\[
\text{COP} = \frac{Q_g}{P_e}
\]

\(Q_g\) - ilość wytworzonej energii cieplnej [kW]
\(P_e\) - ilość pobranej energii elektrycznej [kW]
Wartość współczynnika COP jest wartością zmienną dla danego urządzenia. Zależy ona od temperatury dolnego i górnego źródła. W idealnym przypadku przemiany zachodzące w pompie ciepła można odnosić do cyklu Carnota. W rzeczywistych warunkach osiągana efektywność jest znacznie niższa niż dla cyklu idealnego, stąd stosuje się dodatkowy współczynnik korygujący: 0,5. Dzięki takiemu zabiegu szacowana wartość jest bardziej zbliżona do możliwej do osiągnięcia wartości rzeczywistej. Obliczenie szacowanej efektywności urządzenia na podstawie temperatur dolnego i górnego źródła (COPₚ) można przeprowadzić zgodnie z następującym wzorem:

\[
COP_{ₚ} = 0,5 \cdot \frac{T_g}{T_g - T_d}
\]

\(T_d\) - temperatura dolnego źródła (glikolu/ powietrza) [K]
\(T_g\) - temperatura górnego źródła (wody) [K]

Współczynnik ten osiąga wyższą wartość wraz ze wzrostem temperatury dolnego źródła oraz spadkiem temperatury górnego źródła. Im wyższa wartość COP, tym korzystniej dla samego użytkownika. Stąd też wynika fakt, że dolne źródło pompy ciepła powinno mieć jak najwyższą temperaturę (mieszczącą się w obszarze pracy urządzenia).

Przykładowo zakładając tę samą temperaturę górnego źródła (35°C) i porównując dwa przypadki temperatur dolnego źródła w postaci powietrza o temperaturach: 10°C oraz -10°C uzyskamy następujące wartości.

Powietrze zewnętrzne o temperaturze 10°C:
\(T_d\) - temperatura dolnego źródła (powietrza): 10°C; 10 + 273 = 283 K
\(T_g\) - temperatura górnego źródła (wody): 35°C; 35 + 273 = 308 K
\[
COP_{ₚ} = 0,5 \cdot \frac{308}{308 - 283} = 6,16
\]

Powietrze zewnętrzne o temperaturze -10°C:
\(T_d\) - temperatura dolnego źródła (powietrza): -10°C; -10 + 273 = 263 K
\(T_g\) - temperatura górnego źródła (wody): 35°C; 35 + 273 = 308 K
\[
COP_{ₚ} = 0,5 \cdot \frac{308}{308 - 263} = 3,42
\]

Z drugiej strony, analizując poziom temperatury górnego źródła zaleca się, aby był on możliwie najniższy. Dla przykładu poddano analizie dwa przypadki: ogrzewanie niskotemperaturowe oraz ogrzewanie wysokotemperaturowe. Założono stałą temperaturę dolnego źródła (powietrza/ glikolu) 0°C.

Ogrzewanie niskotemperaturowe o temperaturze zasilania 35°C:
\(T_d\) - temperatura dolnego źródła (powietrza/glikolu): 0°C; 0 + 273 = 273 K
\(T_g\) - temperatura górnego źródła (wody): 35°C; 35 + 273 = 308 K
\[
COP_{ₚ} = 0,5 \cdot \frac{308}{308 - 273} = 4,40
\]

Ogrzewanie wysokotemperaturowe o temperaturze zasilania 50°C:
\(T_d\) - temperatura dolnego źródła (powietrza/glikolu): 0°C; 0 + 273 = 273 K
\(T_g\) - temperatura górnego źródła (wody): 50°C; 50 + 273 = 323 K
\[
COP_{ₚ} = 0,5 \cdot \frac{323}{323 - 273} = 3,23
\]

Zatem widoczny jest spadek efektywności instalacji z pompą ciepła wraz ze wzrastającą temperaturą wody w górnym źródle. Z tego powodu do współpracy z pompą ciepła zaleca się aplikowanie systemów niskotemperaturowych (ogrzewanie podłogowe, ścienne), gdyż ogrzewanie wysokotemperaturowe (grzejnikowe) generuje wyższe koszty eksploatacyjne.
2.4. Sezonowa efektywność pompy ciepła

Oprócz współczynnika efektywności - COP, w danych technicznych urządzenia wyróżniamy również SCOP, który oznacza sezonowy współczynnik efektywności uwzględniający zmienność zapotrzebowania na cieplo budynku oraz zmienność sprawności pompy ciepła w trakcie całego sezonu grzewczego. Pompy gruntowe charakteryzują się wyższym współczynnikiem SCOP, gdyż temperatura dolnego źródła dla tego rodzaju pomp jest bardziej stabilna. Natomiast w przypadku pompy powietrznej wraz ze wzrostem zapotrzebowania na ciepło budynku spada jej efektywność - jest w dużym stopniu zależna od panujących warunków atmosferycznych. Na wartość SCOP wpływa oczywiście wybór systemu ogrzewania. Decydując się na niskotemperaturowy uzyskujemy wyższy sezonowy współczynnik efektywności.

2.5. Porównywanie różnych pomp ciepła

Pompy powietrze-woda pracujące na cele c.o. są jednostkami zewnętrznymi standardowo badanymi dla powietrza zasilającego o określonej wilgotności i temperaturach 7°C oraz 2°C. Pompy zimia-woda pracujące są przy zachowaniu temperatury dolnego źródła (glikolu) 0°C. Natomiast temperatura górnego źródła (wody na wyjściu z pomp ciepła) to 35°C (jako aplikacje niskotemperaturowe) oraz 55°C (jako aplikacje wysokotemperaturowe).

Zatem podsumowując dla pomp ciepła pracujących na cele centralnego ogrzewania zgodnie z PN-EN 14511 wyróżniamy następujące punkty pracy:

<table>
<thead>
<tr>
<th>typ</th>
<th>cele</th>
<th>model Galmet</th>
<th>punkty pracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>powietrze-woda</td>
<td>c.o.</td>
<td>Airmax³</td>
<td>A7 W35, A7 W55, A2 W35</td>
</tr>
<tr>
<td>zimia-woda</td>
<td></td>
<td>Maxima</td>
<td>B0 W35, B0 W55, -</td>
</tr>
</tbody>
</table>

A - z ang. „Air” - powietrze; temp. powietrza wejściowego
W - z ang. „Water” - woda; temp. wody na wyjściu z pompie ciepła
B - z ang. „Brine” - solanka/glikol; temp. glikolu na wejściu do pompie ciepła

Inna norma obowiązuje dla urządzeń generujących ciepło na cele wody użytkowej. Obecnie obowiązującą, jak wcześniej wspomniano, jest norma PN-EN 16147. Uwzględnia ona cykle poboru wody (profil), czyli bardziej odzwierciedla rzeczywistą pracę tego rodzaju urządzenia. Profile oznaczane są literami, przykładowo: M, L, XL. Porównując dwa urządzenia zgodnie z tą samą normą ważne jest, by do badań przyjęty był ten sam profil poboru wody, który zależy od pojemności zbiornika.

Zatem podsumowując dla pomp ciepła pracujących na cele ciepłej wody użytkowej zgodnie z PN-EN 16147 wyróżniamy następujące punkty pracy:

<table>
<thead>
<tr>
<th>typ</th>
<th>cele</th>
<th>model Galmet</th>
<th>cykl poboru wody</th>
<th>punkty pracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>powietrze-woda</td>
<td>c.w.u.</td>
<td>Spectra</td>
<td>L</td>
<td>A15 W10-55, A20 W10-55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic 200</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic 270</td>
<td>XL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic 300</td>
<td>XL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small</td>
<td>L</td>
<td>A20 W10-55</td>
</tr>
</tbody>
</table>

A - z ang. „Air” - powietrze; temp. powietrza wejściowego
W - z ang. „Water” - woda; zakres temperatur nagrzewu wody

Oczywiście producent może również posługiwać się parametrami z innych punktów pracy, lecz porównując urządzenia trzeba zwrócić uwagę, by odnosić się w porównaniu do tego samego punktu pracy.

Porównując pompę ciepła Galmet do innych produktów na rynku należy zwracać zatem uwagę na podawaną normę oraz punkt pracy.
3. POMPY CIEPŁA POWIETRZE-WODA

Pompy ciepła pracujące w systemie powietrze-woda, czyli jednostki pozyskujące ciepło z powietrza, stają się coraz bardziej powszechne. W zakresie przygotowania wody w domach jednorodzinnych konkurują one z kolektorami słonecznymi, przede wszystkim ze względu na łatwość montażu.

Zalety pomp ciepła powietrze-woda:
• łatwość i szybkość montażu
• czyste źródło ciepła
• powszechna dostępność dolnego źródła - powietrza
• bezobsługowość
• brak problemu magazynowania paliwa
• bezpieczeństwo - brak możliwości wybuchu czy zaczadzenia

W ofercie Galmet dostępne są następujące modele pomp pracujące w systemie powietrze-woda:
• Airmax² - do c.o. i c.w.u.
• Spectra - do c.w.u.
• Basic - do c.w.u.
• Small - do c.w.u.

3.1. Powietrze jako dolne źródło pomp ciepła

Powietrze to źródło, z którego pozyskanie ciepła jest najprostsze, gdyż pozyskujemy je bezpośrednio. Główną wadą jest niekoherentność powietrza jako dolnego źródła. Temperatura powietrza jest zmienna w okresie całego roku. W okresie największego zapotrzebowania (zimą), temperatura źródła jest najniższa, a tym samym moc pomp ciepła jest niższa. Ważny jest więc odpowiedni dobór urządzenia, aby moc była wystarczająca. Jednakże tak naprawdę dni z utrzymującą się niską temperaturą zewnętrzną jest w roku niewiele. Przykładowo poniżej rozkład temperatur dla miasta Jelenia Góra:

Wykres 1. Rozkład ilości godzin w ciągu roku z daną temperaturą powietrza zewnętrznego dla Jeleniej Góry

Analizując powyższy wykres, godzin z niskimi temperaturami jest niewiele - dlatego pomp powietrznych zazwyczaj nie dobiera się tak by pracowały w trybie monowalentnym (czyli bez współpracy z innym źródłem), a raczej standardowo sugeruje się tryb monoenergetyczny (wspomaganie grzałką przy zwięksonym zapotrzebowaniu na ciepło), ewentualnie w niektórych przypadkach tryb biwalentny (współpraca z dodatkowym źródłem zasilanym inną energią - np. kominek). Ilość godzin kiedy pompa będzie wymagała wspomagania dodatkowym źródłem (standardowo grzałką) jest niewielka, stąd też ponoszone na to ewentualne koszty są nieznaczne.

3.2. Pompy ciepła powietrze-woda do c.o. i c.w.u. - Airmax²

Urządzenia grzewcze zapewniające ogrzewanie oraz wodę użytkową, czerpiące ciepło z powietrza zewnętrznego. W ofercie Galmet z tego rodzaju pomp ciepła oferowany jest model Airmax².

Oprócz wyżej wymienionych ogólnych zalet pomp ciepła powietrze-woda, dodatkowo urządzenia zapewniające c.o. i c.w.u. wyróżnia:
• montaż na zewnątrz budynku - oszczędność miejsca wewnątrz, brak pomieszczenia kotłowni
• łatwość montażu
• niski koszt instalacji - brak kosztownego wymiennika gruntowego
3.2.1. Zasada działania

3.2.2. Opis techniczny pomp ciepła Galmet - Airmax²

Typoszereg Airmax² obejmuje osiem jednostek:

- Airmax² 6 GT
- Airmax² 9 GT
- Airmax² 12 GT
- Airmax² 15 GT
- Airmax² 16 GT
- Airmax² 21 GT
- Airmax² 26 GT
- Airmax² 30 GT

Charakterystyka typoszeregu pomp ciepła Airmax² 6-15 GT:
- Klasa efektywności energetycznej do A++.
- Wysokie COP: do 4,72 (A7W35).
- Możliwość uzyskania dofinansowania na terenie Niemiec - wpis na listę BAFA.
- System pogodowy dopasowuje parametry pracy pompy do warunków atmosferycznych.
- Możliwość ustawienia harmonogramu pracy zarówno pompy ciepła jak i pompy cyrkulacyjnej.
- Niezawodna sprężarka typu Scroll i elektroniczny zawór rozprężny maksymalizujący wydajność.
- Parownik z automatycznym systemem odszraniania i warstwą hydrofobową.
- Cicha praca dzięki modulowanym wentylatorom.
- Zakres pracy do -20°C.
- Energia z natury - kwalifikuje się do dofinansowania.

W standardzie z urządzeniem:
- Kompletny zestaw czujników temperatury.
- Moduł internetowy do zdalnego sterowania pracą urządzenia.
- Elektroniczna pompa obiegowa zabudowana w urządzeniu.
- Inteligentne sterowanie kolorowym panelem dotykowym z funkcją termostatu.

Dodatkowo opcjonalnie:
- Soft start (łagodny i cichy rozruch sprężarki).
- Możliwość zakupu dedykowanego wymiennika płytkowego (glikol-woda) do instalacji wodnej.
- Możliwość zakupu dedykowanego zaworu trójdrogowego do realizacji funkcji c.w.u.
CHARAKTERYSTYKA TOPOSZEREGU POMP CIEPŁA AIRMAX² 16-30 GT:

- Klasa efektywności energetycznej do A++.
- Wysokie COP: do 4,70 (A7W35).
- Możliwość uzyskania dofinansowania na terenie Niemiec - wpis na listę BAFA.
- System pogodowy dopasowuje parametry pracy pompy do warunków atmosferycznych.
- Możliwość ustawienia harmonogramu pracy zarówno pompy ciepła jak i pompy cyrkulacyjnej.
- Niezawodna sprężarka typu Scroll z EVI – temperatura zasilania do 60°C
- Elektroniczny zawór rozprężny maksymalizujący wydajność.
- Parownik z automatycznym systemem odszraniania i warstwą hydrofobową
- Cicha praca dzięki modulowanym wentylatorom.
- Zakres pracy do -20°C.
- Energia z natury - kwalifikuje się do dofinansowania.

Rys. 16. Pompa ciepła Airmax² 21-30 GT

W standardzie z urządzeniem:

- Kompletny zestaw czujników temperatury
- Moduł internetowy do zdalnego sterowania pracą urządzenia
- Elektroniczna pompa obiegowa zabudowana w urządzeniu
- Zabudowana grzałka elektryczna 7kW
- Inteligentne sterowanie kolorowym panelem dotykowym z funkcją termosytem

Dodatkowo opcjonalnie:

- Możliwość zakupu dedykowanego wymiennika płytowego (glikol-woda) do instalacji wodnej.
- Możliwość zakupu dedykowanego zaworu trójdrogowego do realizacji funkcji c.w.u.

Rys. 17. Pompa ciepła Airmax 2 6-15 GT - budowa; widok z przodu

Rys. 18. Pompa ciepła Airmax 2 6-15 GT - budowa; widok z tyłu

Częstość cykli odszraniania oraz czas ich trwania zależy od temperatur dolnego i górnego źródła, a także wilgotności powietrza. Mogłoby się wydawać, że odszranianie w niskich temperaturach musi być częściej realizowane. Natomiast w niskich temperaturach powietrze ma mniejszą zawartość wilgoci, zatem odszranianie może nie być konieczne przez długi czas pracy urządzenia. Przykładowo w parametrach A-10W45,88 odszranianie wystąpiło jednokrotnie w ciągu trzech godzin pracy pomp ciepła.

![Wykres 2. Przykładowy cykl pomiarowy (A2W35) z odszranianiem](image2.png)

![Wykres 3. Przykładowy cykl pomiarowy (A-10W45,88) z odszranianiem](image3.png)
Sterownik pompy ciepła Airmax2 to ecoTRONIC200-G, obsługuje on kilka podstawowych wariantów instalacji.

Wybierając schemat A sterownik pompy ciepła obsługuje instalację ogrzewania podłogowego podłączoną bezpośrednio do pompy ciepła. Zrealizuje to pompa obiegowa, która zabudowana jest w pompie ciepła. Dodatkowo obsługa zaworu przelączającego c.w.u. Ponadto obsługa grzałki zasobnika oraz pompy cyrkulacyjnej c.w.u.

Schemat B rozszerzony jest o buffer wody grzewczej, mieszacz podłogówki i pompę obiegową dla pętli ogrzewania podłogowego. Pozostałe elementy jak w schemacie A.

Schemat C to prosty układ jedynie z bufor emody wody grzewczej. W tym układzie nie ma realizacji c.w.u. Rozprowadzenie ciepła z bufora następuje przy użyciu zewnętrznej niezależnej automatyki.

Schemat D przewiduje obsługę obiegu grzejnikowego. Pompa ciepła ładuje bufor, a dalej ciepło dystrybuowane jest przy użyciu pompy obiegowej. Ponadto realizowana jest ciepła woda użytkowa, a także obsługa pompy cyrkulacyjnej, czy też dodatkowej grzałki zbiornika c.w.u.

Schemat E przewiduje obsługę obiegu zarówno grzejnikowego jak i podłogowego za pośrednictwem mieszacza. Ciepło magazynowane jest w buforze, a dalej dwie pompy obiegowe transportują ciepło dla dwóch obiegów grzewczych. Schemat E umożliwia również realizację ciepłej wody użytkowej. Standardowo jak w powyższych schematach obsługiwana przez sterownik może być pompa cyrkulacyjna oraz dodatkowa grzałka zbiornika.

3.2.3. Dane techniczne pomp ciepła Galmet - Airmax

Do budowy pomp ciepła Airmax użycie komponentów najwyższej jakości, renomowanych producentów. Sprężarka spiralna (scroll/z EVI) z serii ZH przeznaczona do urządzeń grzewczych; parownik miedziany z lamelami aluminiowymi; skraplacz płyty; elektroniczny zawór rozprężny zapewniający precyzyjną regulację. Urządzenie posiada wbudowaną elektroniczną pompę obiegową o regulowanej wydajności i niskim zużyciu energii. Zastosowane wentylatory gwarantują możliwie niski poziom hałasu. Sterownik pomp ciepła jest intuicyjny zarówno dla instalatora jak i użytkownika. Pompa ciepła Airmax posiada dotykowy, kolorowy panel sterujący, który może pełnić również funkcję termostatu. Aby to zrealizować należy jedynie umieścić go w pomieszczeniu, gdzie ma kontrolować temperaturę. Maksymalna długość przewodu łączącego sterownik z panelem sterującym wynosi 30 m. Pompa ciepła Airmax wyposażona została w grzałkę elektryczną do ewentualnego wspomagania pracy pomp ciepła w okresach wzmożonego zapotrzebowania na ciepło.

Tabela 1. Główne komponenty pomp ciepła Airmax

<table>
<thead>
<tr>
<th>część</th>
<th>Airmax<sup>2</sup> 6 GT</th>
<th>Airmax<sup>2</sup> 9 GT</th>
<th>Airmax<sup>2</sup> 12 GT</th>
<th>Airmax<sup>2</sup> 15 GT</th>
<th>Airmax<sup>2</sup> 16 GT</th>
<th>Airmax<sup>2</sup> 21 GT</th>
<th>Airmax<sup>2</sup> 26 GT</th>
<th>Airmax<sup>2</sup> 30 GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>sprężarka</td>
<td>scroll (spiralna) ZH</td>
</tr>
<tr>
<td>parownik</td>
<td>lamelowy aluminium/miedź</td>
</tr>
<tr>
<td>skraplacz</td>
<td>płyty</td>
<td>płyty</td>
<td>płyty</td>
<td>płyty</td>
<td>płyty</td>
<td>płyty</td>
<td>płyty</td>
<td>płyty</td>
</tr>
<tr>
<td>zawór rozprężny</td>
<td>elektroniczny</td>
<td>elektroniczny</td>
<td>elektroniczny</td>
<td>elektroniczny</td>
<td>elektroniczny</td>
<td>elektroniczny</td>
<td>elektroniczny</td>
<td>elektroniczny</td>
</tr>
<tr>
<td>pompa obiegowa GZ</td>
<td>UPM3 25-75 Flex AS 130</td>
<td>UPML GEO 25-105 130 PWM</td>
<td>UPML GEO 25-105 130 PWM</td>
<td>UPMXL GEO 25-125 130 PWM</td>
</tr>
<tr>
<td>wentylatory</td>
<td>osiowy · 1 szt.</td>
<td>osiowe · 2 szt.</td>
</tr>
<tr>
<td>grzałka</td>
<td>7 kW</td>
</tr>
</tbody>
</table>

Model Airmax² 6 GT oraz 9 GT został wyposażony w pompę obiegową FLEX AS sterowaną sygnałem PWM. Aby utrzymać odpowiednie różnice temperatur w skraplaczu pompy ciepła, sterownik podaje odpowiedni sygnał PWM przez co prędkość pompy zostaje zmniejszona lub zwiększona. FLEX AS posiada diody sygnalizacyjne, jedną mówiącą o statusie pracy oraz cztery diody, które podczas pracy są wskaźnikiem poziomu wydajności pompy. Maksymalna wysokość podnoszenia pompy obiegowej UPM3 25-75 Flex AS 130 wynosi 7,5m. Natomiast maksymalny pobór prądu to 60W. FLEX AS to pompa obiegowa najwyższej klasy energetycznej o współczynniku EEI ≤20.

Rys. 19. Pompa obiegowa UPM3 FLEX AS

Tabela 2. Nominalny przepływ przez skraplacz pomp ciepła Airmax² 6 i 9 GT i pobór mocy pomp obiegowych (UPM3 25-75 Flex AS 130)

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>Airmax<sup>2</sup> 6 GT</th>
<th>Airmax<sup>2</sup> 9 GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominalny przepływ wody przez skraplacz [m³/h]</td>
<td>1,06</td>
<td>1,39</td>
</tr>
<tr>
<td>nominalny pobór mocy pomp obiegowej [W]</td>
<td>32</td>
<td>40</td>
</tr>
</tbody>
</table>

[*] Pobór mocy pomp obiegowych został uwzględniony przy wyznaczaniu COP pomp ciepła. Nie należy zatem dodatkowo uwzględniać go przy tworzeniu symulacji kosztów eksploatacyjnych
Przepływ przez skraplacz w modelu Airmax² 12, 15 i 16 GT zapewnia również, sterowana sygnałem PWM, elektroniczna pompa obiegowa - UPML GEO 25-105 130 PWM. Najwyższa klasa energetyczna (EEI < 0,23) zapewnia niskie zużycie energii. Maksymalna wysokość podnoszenia pompy obiegowej wynosi 10,5 m, natomiast maksymalny pobór prądu to 140 W.

Tabela 3. Nominalny przepływ przez skraplacz pompy ciepła Airmax² 12, 15 i 16 GT i pobór mocy pomp obiegowych (UPML GEO 25-105 130 PWM)

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>Airmax<sup>2</sup> 12 GT</th>
<th>Airmax<sup>2</sup> 15 GT</th>
<th>Airmax<sup>2</sup> 16 GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominalny przepływ wody przez skraplacz [m³/h]</td>
<td>1,89</td>
<td>2,39</td>
<td>2,68</td>
</tr>
<tr>
<td>nominalny pobór mocy pompy obiegowej [W]</td>
<td>60</td>
<td>75</td>
<td>80</td>
</tr>
</tbody>
</table>

* Pobór mocy pomp obiegowych został uwzględniony przy wyznaczaniu COP pompy ciepła. Nie należy zatem dodatkowo uwzględniać go przy tworzeniu symulacji kosztów eksploatacyjnych.

Wykres 4. Charakterystyki pompy obiegowej UPM3 25-75 Flex AS 130

Wykres 5. Charakterystyki pompy obiegowej UPML GEO 25-105 130 PWM
Przepływ przez skraplacz w modelach Airmax® 21-30 GT zapewnia elektroniczna pompa obiegowa UPMXL GEO 25-125 130 PWM również, sterowana sygnałem PWM. Najwyższa klasa energetyczna (EEI < 0,23) zapewnia niskie zużycie energii. Maksymalna wysokość podnoszenia pompy obiegowej wynosi 12,5 m. Maksymalny pobór prądu to 180 W.

Tabela 4. Nominalny przepływ przez skraplacz pompy ciepła Airmax® 21-30 GT i pobór mocy pomp obiegowych (UPMXL GEO 25-125 130 PWM)

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>Airmax® 21 GT</th>
<th>Airmax® 26 GT</th>
<th>Airmax® 30 GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominalny przepływ wody przez skraplacz [m³/h]</td>
<td>3,62</td>
<td>4,49</td>
<td>5,15</td>
</tr>
<tr>
<td>nominalny pobór mocy pompy obiegowej [W]</td>
<td>100</td>
<td>120</td>
<td>135</td>
</tr>
</tbody>
</table>

* Pobór mocy pomp obiegowych został uwzględniony przy wyznaczaniu COP pompy ciepła. Nie należy zatem dodatkowo uwzględniać go przy tworzeniu symulacji kosztów eksploatacyjnych.

Wartości mocy grzewczych, chłodniczych, elektrycznych, COP zależne są od temperatur górnego i dolnego źródła, jak wcześniej wykazano. Szczególnie dla jednostek pracujących w systemie powietrze-woda parametry te zmieniają się w większym zakresie, ze względu na dużą rozpiętość temperatur dolnego źródła.
Tabela 5. Dane podstawowe pompy ciepła Airmax

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>j. m.</th>
<th>6 GT</th>
<th>9 GT</th>
<th>12 GT</th>
<th>15 GT</th>
<th>16 GT</th>
<th>21 GT</th>
<th>26 GT</th>
<th>30 GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>numer katalogowy</td>
<td>-</td>
<td>09-260600</td>
<td>09-260900</td>
<td>09-261200</td>
<td>09-261500</td>
<td>09-261600</td>
<td>09-262100</td>
<td>09-262600</td>
<td>09-263000</td>
</tr>
<tr>
<td>moc grzewcza</td>
<td>(A7W35)</td>
<td>kW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COP</td>
<td>-</td>
<td>4,63</td>
<td>6,09</td>
<td>8,31</td>
<td>10,07</td>
<td>11,25</td>
<td>15,03</td>
<td>18,75</td>
<td>21,42</td>
</tr>
<tr>
<td>mocy elektrycznej</td>
<td>(A2W35)</td>
<td>kW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COP</td>
<td>-</td>
<td>3,28</td>
<td>3,44</td>
<td>3,58</td>
<td>3,55</td>
<td>3,55</td>
<td>3,46</td>
<td>3,51</td>
<td>3,52</td>
</tr>
<tr>
<td>moc grzewcza</td>
<td>(A7W55)</td>
<td>kW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COP</td>
<td>-</td>
<td>2,59</td>
<td>2,70</td>
<td>2,79</td>
<td>2,92</td>
<td>3,25</td>
<td>3,14</td>
<td>3,20</td>
<td>3,18</td>
</tr>
<tr>
<td>wymiary [wys. x szer. x gł.] mm</td>
<td>-</td>
<td>730 x 1295 x 520</td>
<td>1305 x 1295 x 520</td>
<td>1399 x 1477 x 700</td>
<td>1862 x 1690 x 700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>przyłącza hydrauliczne</td>
<td>-</td>
<td>1”</td>
<td>1”</td>
<td>1”</td>
<td>1”</td>
<td>1”</td>
<td>5/4”</td>
<td>5/4”</td>
<td>5/4”</td>
</tr>
<tr>
<td>maksymalna temperatura pracy °C</td>
<td>-</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>minimalna temperatura pracy °C</td>
<td>-</td>
<td>-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maksymalna temperatura zasilania °C</td>
<td>-</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>czynnik chłodniczy</td>
<td>-</td>
<td>R410A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ilość czynnika kg</td>
<td>-</td>
<td>2,1</td>
<td>2,1</td>
<td>3,2</td>
<td>3,2</td>
<td>5,0</td>
<td>5,5</td>
<td>6,5</td>
<td>7,0</td>
</tr>
<tr>
<td>sposób odszraniania</td>
<td>-</td>
<td>odwrócenie obiegu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>moc grzałki elektrycznej kW</td>
<td>-</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ilość wentylatorów</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>moc akustyczna dB</td>
<td>-</td>
<td>65,0</td>
<td>66,5</td>
<td>70,0</td>
<td>73,3</td>
<td>73,5</td>
<td>74,4</td>
<td>75,0</td>
<td>75,5</td>
</tr>
<tr>
<td>ciśnienie akustyczne dB</td>
<td>-</td>
<td>45,0</td>
<td>46,5</td>
<td>50,0</td>
<td>53,3</td>
<td>53,5</td>
<td>54,4</td>
<td>55,0</td>
<td>55,5</td>
</tr>
<tr>
<td>napięcie i częstotliwość zasilania V/Hz</td>
<td>-</td>
<td>400/50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prąd rozruchowy (bez ogranicznika prądu rozruchowego) A</td>
<td>-</td>
<td>28</td>
<td>43</td>
<td>52</td>
<td>62</td>
<td>70</td>
<td>101</td>
<td>128</td>
<td>118</td>
</tr>
<tr>
<td>Przybliżona wartość prądu roz- ruchowego przy zastosowaniu ogranicznika (soft start) A</td>
<td>-</td>
<td>17</td>
<td>26</td>
<td>31</td>
<td>37</td>
<td>42</td>
<td>61</td>
<td>77</td>
<td>71</td>
</tr>
</tbody>
</table>

1 Wg EN 14511.
2 Wg EN 12102.
3 W odległości 4 m.
4 Soft start w pompach ciepła Airmax - opcja.

Zakres możliwych temperatur pracy określany jest obszarem pracy urządzenia. Maksymalna i minimalna temperatura wody dotyczy zasilania obiegu grzewczego, czyli na wyjściu z pompy ciepła.

Tabela 6. Obszar pracy pompy ciepła Airmax 6-15 GT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-20</td>
<td>45</td>
<td>20</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>-10</td>
<td>57</td>
<td>20</td>
<td>60</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>57</td>
<td>20</td>
<td>60</td>
<td>25</td>
</tr>
<tr>
<td>30</td>
<td>57</td>
<td>35</td>
<td>60</td>
<td>35</td>
</tr>
</tbody>
</table>
Tabela 7. Parametry energetyczne pomp ciepła Airmax[^2]

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>j. m.</th>
<th>6 GT</th>
<th>9 GT</th>
<th>12 GT</th>
<th>15 GT</th>
<th>16 GT</th>
<th>21 GT</th>
<th>26 GT</th>
<th>30 GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOP[^1]</td>
<td></td>
<td>3,55</td>
<td>3,65</td>
<td>3,94</td>
<td>4,07</td>
<td>4,07</td>
<td>3,99</td>
<td>4,07</td>
<td>4,01</td>
</tr>
<tr>
<td>(\eta_s^2)</td>
<td>%</td>
<td>139,2</td>
<td>143,0</td>
<td>154,6</td>
<td>157,5</td>
<td>159,8</td>
<td>154,2</td>
<td>156,7</td>
<td>157,5</td>
</tr>
<tr>
<td>klasa energetyczna</td>
<td>-</td>
<td>A+</td>
<td>A+</td>
<td>A++</td>
<td>A++</td>
<td>A++</td>
<td>A++</td>
<td>A++</td>
<td>A++</td>
</tr>
<tr>
<td>(P_{desyn}) kW</td>
<td>4,10</td>
<td>5,45</td>
<td>7,45</td>
<td>9,30</td>
<td>10,58</td>
<td>15,12</td>
<td>17,58</td>
<td>18,09</td>
<td>19,79</td>
</tr>
<tr>
<td>SCOP[^1]</td>
<td></td>
<td>2,84</td>
<td>2,96</td>
<td>3,07</td>
<td>3,09</td>
<td>3,13</td>
<td>3,04</td>
<td>3,12</td>
<td>3,13</td>
</tr>
<tr>
<td>(\eta_s^2)</td>
<td>%</td>
<td>110,8</td>
<td>115,5</td>
<td>119,6</td>
<td>120,6</td>
<td>122,4</td>
<td>118,8</td>
<td>121,7</td>
<td>122,3</td>
</tr>
<tr>
<td>klasa energetyczna</td>
<td>-</td>
<td>A+</td>
<td>A+</td>
<td>A+</td>
<td>A+</td>
<td>A+</td>
<td>A+</td>
<td>A+</td>
<td>A+</td>
</tr>
<tr>
<td>(P_{desyn}) kW</td>
<td>3,89</td>
<td>5,40</td>
<td>7,18</td>
<td>9,10</td>
<td>10,86</td>
<td>14,49</td>
<td>18,20</td>
<td>20,18</td>
<td>24,99</td>
</tr>
</tbody>
</table>

[^1]: Wg EN 14825.
[^2]: Sezonowa efektywność ogrzewania pomieszczeń.

Tabela 8. Pozostałe informacje instalacyjne - Airmax[^2]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>zabezpieczenie elektryczne</td>
<td>6 GT</td>
<td>9 GT</td>
</tr>
<tr>
<td>C20</td>
<td>C25</td>
<td>C25</td>
</tr>
<tr>
<td>kabel zasilający</td>
<td>rodzaj</td>
<td>5 x 4 mm²</td>
</tr>
<tr>
<td>długość</td>
<td>3,5 mb</td>
<td></td>
</tr>
<tr>
<td>przewód panelu sterującego</td>
<td>rodzaj</td>
<td>4 x 0,5 mm²</td>
</tr>
<tr>
<td>długość[^3]</td>
<td>5 mb</td>
<td></td>
</tr>
<tr>
<td>czujnik temp. (bufor, zbiornik c.w.u.)</td>
<td>rodzaj</td>
<td>2 x 0,5 mm²</td>
</tr>
<tr>
<td>długość[^3]</td>
<td>5 mb</td>
<td></td>
</tr>
<tr>
<td>czujnik temp. (obiegi grzewcze)</td>
<td>rodzaj</td>
<td>2 x 0,5 mm²</td>
</tr>
<tr>
<td>długość[^3]</td>
<td>2 mb</td>
<td></td>
</tr>
<tr>
<td>Przewód (zawór przełączający trojdrogowy c.w.u.)</td>
<td>rodzaj</td>
<td>4 x 1 mm²</td>
</tr>
<tr>
<td>długość</td>
<td>5 mb</td>
<td></td>
</tr>
<tr>
<td>Pompy obiegowe (obiegi grzewczych, cyrkulacyjna, wymiennik płytowy-bufor)</td>
<td>rodzaj</td>
<td>3 x 1,5 mm²</td>
</tr>
<tr>
<td>(dodatkowe pompy obiegowe należy podłączyć przez styczniki)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stopień ochrony</td>
<td>IP24</td>
<td></td>
</tr>
<tr>
<td>przyłącza hydrauliczne[^3]</td>
<td>1” mosiądz</td>
<td>5/4” mosiądz</td>
</tr>
</tbody>
</table>

[^1]: Istotne możliwości przedłużenia przewodu do maksymalnie 30 m.
[^2]: Istotne możliwości przedłużenia przewodu do maksymalnie 15 m.
[^3]: Nie należy redukować średnicy wewnętrznej rury, gdyż powoduje to opory przepływu.

3.2.4. Charakterystyki pomp ciepła Galmet - Airmam[^2]

Dla każdej jednostki typoszeregu stworzono charakterystyki. Dla zastosowań niskotemperaturowych (ogrzewanie podłogowe) odpowiednia jest charakterystyka W35. Dla zastosowań wysokotemperaturowych (ogrzewanie grzejnikowe) odpowiednia jest charakterystyka W55. Wartości 35, 45 i 55 to temperatury wody (°C) na wyjściu z pompy ciepła. Analizując poniższe wykresy widoczna jest różnica w charakterystykach standardowej sprężarki scroll i sprężarki z technologią EVI. EVI przy niższych temperaturach powietrza, pozwala na uzyskiwanie większej mocy grzewczej dla wyższych parametrów wody zasilającej.
Wykres 11. Charakterystyka Airmax® 12 GT

Wykres 12. Charakterystyka Airmax® 15 GT
Wykres 13. Charakterystyka Airmax® 16 GT

Wykres 14. Charakterystyka Airmax® 21 GT
Wykres 15. Charakterystyka Airmax® 26 GT

Wykres 16. Charakterystyka Airmax® 30 GT
3.3. Pompy ciepła powietrze-woda do c.w.u.

Wyróżniamy pompy ciepła zintegrowane ze zbiornikiem (podgrzewacz z pompą ciepła) i pompy ciepła, które służą do podłączenia do niezależnego zbiornika.

Zalety pomp powietrze-woda do c.w.u.:

- łatwość obsługi
- możliwość pracy na powietrzu wewnętrznym
- możliwość wykorzystania pomp ciepła do osuszania powietrza i częściowego klimatyzowania pomieszczenia
- bezobsługowość
- możliwość podłączenia dodatkowego źródła (kotła c.o., solara). Łącąc kocioł c.o. z pompą ciepła do c.w.u. uzyskujemy ciepłą wodę latem bez konieczności rozpalania w kotle.

3.3.1. Zasada działania

W przypadku podgrzewaczy z pompą ciepła (model Basic i Spectra) specyficzną formę ma skraplacz. Jest to nawinięta na zbiornik rura aluminiowa, która przez ścianę zbiornika oddaje ciepło do wody użytkowej.

Pompa ciepła do c.w.u. bez zbiornika (model Small) ma wbudowany skraplacz w formie wymiennika płytowego. W wymienniku tym czynnik termodynamiczny oddaje ciepło do wody. Przepływ wymuszany jest przez pompę obiegową, która znajduje się w instalacji (poza urządzeniem). Pompa ciepła może być podłączona bezpośrednio do wody użytkowej lub pod wężownicą. Wybrany wariant podłączenia determinuje rodzaj pompy obiegowej, którą należy zamontować. W przypadku podłączenia bezpośredniego, pompa obiegowa tłoczy wodę użytkową, zatem powinna mieć ona atest higieniczny. Gdy wybrany zostanie wariant podłączenia przez wężownicę pompa obiegowa wymusza obieg wody w układzie zamkniętym pomiędzy wymiennikiem płytowym pompy ciepła, a wężownicą zbiornika (zaleca się użycie wody o niskiej twardości). Ciśnienie w tym układzie zamkniętym powinno wynosić 0,5-1,0 bar. W tym przypadku stosowane są standardowe pompy obiegowe do wody kotleowej. Sterowanie pracą pompy obiegowej zapewnia sterownik pompy ciepła.
3.3.2. Opis techniczny pompy ciepła do c.w.u. ze zbiornikiem - Spectra, Basic

Charakterystyka typoszeregu pomp ciepła Basic:
- Najwyższa klasa efektywności energetycznej: A+ (Basic 200), A (Basic 270 i Basic 300).
- Pojemności podgrzewacza 200, 270 i 300 l.
- Kompaktowe wymiary.
- Wartość współczynnika COP: teraz do 3,49 (A15W10-55).
- Podgrzewanie wody do temperatury 55°C.
- Dodatkowe wężownice spiralne do podłączenia zewnętrznych źródeł.
- Sterownik z funkcjami ECO, ANTYLEGIONELLA, PARTY oraz możliwością współpracy z dodatkowym źródłem: np. instalacją solarną lub kotłem c.o.
- Możliwość ustawienia harmonogramu pracy zarówno pompy ciepła jak i pomp cyrkulacyjnej.
- Osuszanie i częściowe klimatyzowanie pomieszczenia podczas pracy.
- Niskie zużycie energii – tylko 402 W (dla Basic 200).
- System odszraniania i zakres pracy do -7°C (dla Basic 300)
- Energia z natury - kwalifikuje się do dofinansowania.

W standardzie z urządzeniem:
- DIELECTRIC PROTECTION® - zabezpieczenia antykorozyjne gwarantujące wydłużoną żywotność zbiornika.
- Grzałka elektryczna 2 kW do dogrzewania wody w okresach wzmożonego zapotrzebowania na energię.
- Kompletny zestaw czujników temperatury.

Dodatkowo opcjonalnie:
- Czujnik do sterowania obiegiem solarnym.
- Dostępne dedykowane elementy wentylacyjne.
Charakterystyka pomp ciepła Spectra i Spectra Smart:

- Najwyższa klasa efektywności energetycznej: A+.
- Wysoka sprawność COP 3,52 przy (A20/W10-55) i 3,49 przy (A15/W10-55)
- SQUARE Jacket Design® - unikalny, elegancki kształt obudowy.
- Zbiornik o po. 200 l zabezpiecza ciepłą wodę użytkową dla 4-5 osobowej rodziny.
- Woda podgrzewana nawet do 55°C.
- Wężownica spiralna umożliwia współpracę z kotłem c.o. lub kolektorami słonecznymi.
- Mogliwość ustawienia harmonogramu pracy pomp ciepła i pompy cyrkulacyjnej.
- Niskie zużycie energii – tylko 450 W.
- Osuszanie i częściowe klimatyzowanie pomieszczenia podczas pracy urządzenia.
- Możliwość uzyskania dotacji na zakup ekologicznego źródła ciepła – w ramach programów ograniczania niskiej emisji (PONE).

W standardzie dla modelu Spectra Smart dodatkowo:

- Wygoda sterowania – regulator z kolorowym panelem dotykowym intuicjnym „kafelkowym” menu.
- Wygoda użytkowania – aktywna anoda tytanowa zarządzana przez sterownik pomp ciepła
- Oszczędność – tryb ECO gwarantuje najbardziej wydajną pracę pompy.
- Bezpieczeństwo – tryb URLOP dla ochrony pompy ciepła w fazie oczekiwania.

Rys. 25. Pompa ciepła Spectra

W standardzie z urządzeniem:

- DIELECTRIC PROTECTION® - zabezpieczenia antykorozyjne gwarantujące wydłużoną żywotność zbiornika.
- Grzałka elektryczna 2 kW do dogrzewania wody w okresach wzmożonego zapotrzebowania na energię.
- Kompletny zestaw czujników temperatury.

Dodatkowo opcjonalnie:

- Czujnik do sterowania obiegiem solarnym.
- Dostępne dedykowane elementy wentylacyjne.

Modele Spectra i Basic to pompki ciepła przeznaczone do zapewnienia ciepłej wody użytkowej. Mogą pracować na powietrzu zewnętrznym lub wewnętrznym, z tym, że montowane są wewnątrz pomieszczeń. W przypadku pracy na powietrzu obiegowym z pomieszczenia, konieczne jest zapewnienie odpowiedniej wentylacji oraz zachowanie minimalnej kubatury pomieszczenia na poziomie 30 m³. Dodatkowo należy pamiętać o wymaganej odległości 1,5 m między wlotem i wyrzutem powietrza (najprostszym sposobem oddzielenia tych strumieni jest zastosowanie kolana). Pracując, pompa ciepła ochładza powietrze, jednocześnie je osusza, wykraplając wilgoć zawartą w powietrzu. Zatem istnieje możliwość skierowania ochłodzonego powietrza do dowolnego pomieszczenia, celem jego częściowego chłodzenia. Należy przy tym pamiętać, że efekt chłodzenia następuje jedynie w czasie pracy urządzenia, to znaczy grzania wody. W przypadku pracy na powietrzu zewnętrznym lub pobieraniu czy też wyrzucaniu powietrza do sąsiadującego pomieszczenia stosuje się kanały wentylacyjne. Kanały powietrzne nie powinny przekraczać 5 m w linii prostej na wlocie i wylocie, każde kolano to dodatkowy opór miejscowy (odejmuje 2 m z dyspozycyjnej długości). W ofercie Galmet dostępne są elementy wentylacyjne (z blachy ocynkowanej), których można użyć przy montażu pomp ciepła. Przykładowe konfiguracje przedstawione są w dalszej części opracowania. Zakres temperaturowy pracy tych jednostek to od 7 do 35°C (od -7 do 35°C w przypadku Basic 300), zatem w okresie zimowym, w przypadku pobierania powietrza z zewnątrz, wymagają wspomagania grzałką (standardowo zabudowana grzałka w zbiorniku) lub dodatkowym źródłem. Podgrzewacz zintegrowany z pompą ciepła jest emailowany, a celem jego ochrony, wyposażany jest w anody magnesowe, które okresowo należy wymieniać. W przypadku zastosowania anody tytanowej należy wykrywać okresowe przeglądy, celem kontroli jej pracy. Każdy zbiornik posiada też odpowiednią izolację zewnętrzną, która ogranicza straty ciepła.

Typoszereg Basic zawiera 4 urządzania:

- Basic 200 z jedną dodatkową wężownicą
- Basic 270 z jedną dodatkową wężownicą
- Basic 270 z dwoma dodatkowymi wężownicami
- Basic 300 z jedną dodatkową wężownicą

Model Spectra występuje jedynie w wersji 200 z jedną dodatkową wężownicą. Dostępna jest wersja pomp ciepła Spectra Smart, która standardowo wyposażona jest w anodę tytanową - zapewniającą bezobsługowość urządzenia.
Zatem każdy podgrzewacz z pompą ciepła wyposażony jest standardowo w dodatkową wężownicę. Wężownica stalowa służy do podłączenia dodatkowego źródła tj. kotła i/lub solara. Najczęściej stosowanym rozwiązaniem jest połączenie pompy ciepła (Basic, Spectra) z kotłem c.o.

W zestawie z pompą ciepła dostarczany jest czujnik dodatkowy standardowo stosowany w instalacji z kotłem. Sterowanie ładowaniem zbiornika (a konkretnie zewnętrzną pompą obiegową) przy użyciu kotła c.o. może być realizowane przez sterownik pompy ciepła lub sterownik kotła. Na poniższym schemacie został przedstawiony ten drugi wariant.

W przypadku obsługi zestawu solarnego wystarczy dokupić czujnik PT1000 (czujnik solarny nie jest standardowo dostarczany z urządzeniem). Na podstawie odczytu temperatury z czujnika, sterownik pompy ciepła załącza dodatkową solarną pompę obiegową. W tym przypadku możemy zrezygnować z zakupu sterownika zestawu solarnego, gdyż jego rolę przejmie sterownik pompy ciepła. Z tym, że sterownik ten obsługuje tylko jedno dodatkowe źródło, zatem jeśli wybierzemy podgrzewacz dwuwężownicowy to jedno ze źródeł musi być obsługiwane przez zewnętrzną automatykę.

Sterowniki stosowane pompach ciepła do c.w.u. ze zbiornikiem:
- ST 53 - sterownik pompy ciepła Basic i Small
- ST 530 - sterownik pompy ciepła Spectra
3.3.3. Dane techniczne pompy ciepła – Spectra

Tabela 9. Główne komponenty podgrzewacza z pompą ciepła Spectra

<table>
<thead>
<tr>
<th>część</th>
<th>specyfikacja</th>
</tr>
</thead>
<tbody>
<tr>
<td>sprężarka</td>
<td>rotacyjna</td>
</tr>
<tr>
<td>parownik</td>
<td>lamelowy aluminiowo-miedziany</td>
</tr>
<tr>
<td>skraplacz</td>
<td>nawijany na zbiornik</td>
</tr>
<tr>
<td>zawór rozprężny</td>
<td>termostatyczny</td>
</tr>
<tr>
<td>wentylator</td>
<td>promieniowy</td>
</tr>
<tr>
<td>sterownik</td>
<td>ST-530</td>
</tr>
<tr>
<td>grzałka</td>
<td>miedziana</td>
</tr>
</tbody>
</table>

Podgrzewacze z pompą ciepła do wody użytkowej badane są według normy PN-EN 16147. Parametry pracy podawane są dla powietrza zasilającego na poziomie 15 i 20°C oraz temperaturze wody zimnej 10°C i ciepłej użytkowej 55°C.

Tabela 10. Dane podstawowe pompy ciepła Spectra

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>j.m.</th>
<th>Spectra</th>
</tr>
</thead>
<tbody>
<tr>
<td>nr katalogowy</td>
<td>-</td>
<td>09-363100 / 09-363100Q</td>
</tr>
<tr>
<td>średnia moc grzewcza kW</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>COP1</td>
<td>-</td>
<td>3,49</td>
</tr>
<tr>
<td>COP2</td>
<td>-</td>
<td>3,52</td>
</tr>
<tr>
<td>maksymalna temperatura pracy °C</td>
<td>-</td>
<td>55</td>
</tr>
<tr>
<td>wymiary [wys. x szer. x gł.] mm</td>
<td>-</td>
<td>1560 x 660 x 670</td>
</tr>
<tr>
<td>ciężar kg</td>
<td>-</td>
<td>115</td>
</tr>
<tr>
<td>moc akustyczna dB</td>
<td>-</td>
<td>55,7</td>
</tr>
<tr>
<td>ciśnienie akustyczne dB</td>
<td>-</td>
<td>45,0</td>
</tr>
<tr>
<td>zakres pracy pompy °C</td>
<td>-</td>
<td>+7/+35</td>
</tr>
<tr>
<td>nominalny przepływ powietrza m³/h</td>
<td>-</td>
<td>512</td>
</tr>
<tr>
<td>maksymalna długość kanałów powietrznych m</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>czynnik chłodniczy R134a</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ilość czynnika kg</td>
<td>-</td>
<td>1,2</td>
</tr>
<tr>
<td>pobór mocy elektrycznej pompy ciepła kW</td>
<td>-</td>
<td>0,453</td>
</tr>
<tr>
<td>moc elektrycznej grzałki kW</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>całkowita moc grzewcza (pompa ciepła + grzałka) kW</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>napięcie i częstotliwość zasilania urządzenia V/Hz</td>
<td>-</td>
<td>230/50</td>
</tr>
<tr>
<td>maksymalny pobór prądu A</td>
<td>-</td>
<td>10,8</td>
</tr>
<tr>
<td>stopień ochrony</td>
<td>-</td>
<td>IP22</td>
</tr>
<tr>
<td>cykl poboru wody (zgodnie z EN-16147) - L</td>
<td>-</td>
<td>L</td>
</tr>
<tr>
<td>maksymalna objętość wody zmienną (V_m)¹ l</td>
<td>-</td>
<td>247</td>
</tr>
<tr>
<td>temperatura referencyjna (Θ_m)¹ °C</td>
<td>-</td>
<td>52,80</td>
</tr>
<tr>
<td>maksymalna objętość wody zmieszanej (V_m)² l</td>
<td>-</td>
<td>243</td>
</tr>
<tr>
<td>temperatura referencyjna (Θ_m)² °C</td>
<td>-</td>
<td>52,73</td>
</tr>
<tr>
<td>sugerowane zabezpieczenie elektryczne C16</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>krócie przyłączeniowe °C</td>
<td>-</td>
<td>1° (3/4" – cyrkulacja)</td>
</tr>
</tbody>
</table>

1 EN-16147 A15W10-55
2 EN-16147 A20W10-55
3 Wg EN 12102.
4 W odległości 2 m.

Celem przybliżenia pojęć: maksymalna objętość wody zmienną i temperatura referencyjna, wartości te uzyskiwane są w badaniu wg normy PN-EN 16147. Przy ustawieniu temperatury zadanej zbiornika na 55°C i wygrzaniu zbiornika rozpoczyna się pobór wody (przy określonych warunkach), trwa on tak długo, aż woda na wylocie ze zbiornika osiągnie 40°C. Średnia temperatura w czasie tego poboru wody określana jest temperaturą referencyjną. Natomiast objętość pobranej ciepłej wody w tym czasie określana jest właśnie jako maksymalna objętość wody zmienną.
Tabela 11. Parametry zbiornika w pompie ciepła Spectra

<table>
<thead>
<tr>
<th>parametry zbiornika</th>
<th>j.m.</th>
<th>wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>materiał</td>
<td>-</td>
<td>stal/emalia</td>
</tr>
<tr>
<td>pojemność nominalna zbiornika</td>
<td>l</td>
<td>200</td>
</tr>
<tr>
<td>pojemność brutto zbiornika</td>
<td>l</td>
<td>210</td>
</tr>
<tr>
<td>pojemność rzeczywista zbiornika</td>
<td>l</td>
<td>202</td>
</tr>
<tr>
<td>ilość wężownic stalowych</td>
<td>szt.</td>
<td>1</td>
</tr>
<tr>
<td>powierzchnia wymiennika (wężeńcy)</td>
<td>m²</td>
<td>1</td>
</tr>
<tr>
<td>pojemność wymiennika (wężeńcy)</td>
<td>l</td>
<td>7</td>
</tr>
<tr>
<td>max. ciśnienie pracy zbiornika</td>
<td>MPa</td>
<td>1,0</td>
</tr>
<tr>
<td>max. ciśnienie wężeńcy</td>
<td>MPa</td>
<td>1,6</td>
</tr>
<tr>
<td>max. temp. pracy zbiornika</td>
<td>°C</td>
<td>100</td>
</tr>
<tr>
<td>max. temp. pracy wężeńcy</td>
<td>°C</td>
<td>110</td>
</tr>
<tr>
<td>moc wymiennika (70/10/45°C)</td>
<td>kW</td>
<td>33,6</td>
</tr>
<tr>
<td>wydajność (70/10/45°C)</td>
<td>l/h</td>
<td>800</td>
</tr>
<tr>
<td>moc wymiennika (80/10/45°C)</td>
<td>kW</td>
<td>44,8</td>
</tr>
<tr>
<td>wydajność (80/10/45°C)</td>
<td>l/h</td>
<td>1070</td>
</tr>
</tbody>
</table>

Tabela 12. Parametry energetyczne pomp ciepła Spectra

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>j.m.</th>
<th>wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>ηwh²</td>
<td>%</td>
<td>142</td>
</tr>
<tr>
<td>roczne zużycie energii (AEC)²</td>
<td>kWh</td>
<td>721</td>
</tr>
</tbody>
</table>

¹ Sezonowa efektywność ogrzewania wody
² Przy założeniu temperatury powietrza wlotowego na poziomie 20°C

Pompa ciepła Spectra występuje również w wersji Smart (nr kat.: 09-363100Q). W wersji tej w zbiorniku pompmy ciepła zamontowano anodę tytanową zapewniającą pełną bezobsługowość. Dodatkowo sterownik wersji Smart proponuje kafelkowy interfejs, który zapewni jeszcze bardziej intuicyjną obsługę. Sterownik ten jest również poszerzony o dodatkowe funkcje: urlop, czy też Turbo (szybki jednorazowy podgrzew wody).

Czas nagrzewu zbiornika pompą ciepła zależy od temperatury powietrza zasilającego oraz zakresu temperatury tylko wodnej. Przykładowo, dla pomp ciepła Spectra i temperatury powietrza 15°C, podczas badań urządzenia proces ten przebiegał następująco:

Wykres 17. Cykl nagrzewu wody przez pompę ciepła Spectra (A15 / W10-55)

Czas nagrzewu (przy temperaturze powietrza 15°C) trwał łącznie 313 minut. Średni pobór mocy w tym czasie wyniósł 453 W. W innych punktach pracy pobór prądu może się różnić. Czas potrzebny do nagrzewu wody zależy od temperatury powietrza zasilającego, poniżej zależność tą przedstawiono na wykresie.
W całym zakresie pracy można wykreślić krzywą obrazującą zależność pomiędzy temperaturą powietrza zasilającego, a czasem nagrzewu wody. Dodatkowo na poniższym wykresie przedstawiono zmiany mocy grzewczej oraz elektrycznej.

Najprostszym sposobem przedstawienia efektywności (COP) pompy ciepła jest porównanie mocy grzewczej do pobieranej w tym samym czasie mocy elektrycznej. Zmiany efektywności nagrzewu zostały przedstawione poniżej:
COP pompy ciepła obliczane dla czasu samego nagrzewu zbiornika (przedstawione na powyższej charakterystyce) to zupełnie inna wartość niż ta wg PN-EN 16147, która uwzględnia przykładowy cykl dobowy poboru wody, straty postojowe i pracę w wyższym przedziale temperatury wody. Wartości zgodne z tą normą zostały podane powyżej w tabeli.

Test wg PN-EN 16147 dla pompy ciepła Spectra, przykładowo przy temperaturze powietrza 15°C, przedstawia się on następująco:

3.3.4. Dane techniczne pompy ciepła – Basic

Do budowy pompy ciepła Basic użyto komponentów gwarantujących wysoką efektywność. Zastosowano sprężarkę rotacyjną, parownik miedziany z lamelami aluminiowymi, termostatyczny zawór rozprężny oraz podobnie jak w Spectra, zastosowano wentylator promieniowy charakteryzujący się dużym sprężem. Sterownik pompy ciepła jest intuicyjny zarówno dla instalatora jak i użytkownika, posiada monochromatyczny wyświetlacz. Pompa Basic standardowo wyposażona jest w grzałkę elektryczną 2 kW do ewentualnego wspomagania pracy pompy ciepła w okresach wzmożonego zapotrzebowania na ciepłą wodę lub zapewnienia wody w przypadku niskich temperatur powietrza zasilającego i braku źródła dodatkowego. Model Basic występuje w wersjach: 200 l z jedną wężownicą, 270 l z jedną lub dwoma wężownicami, 300 l z jedną wężownicą.

<table>
<thead>
<tr>
<th>część</th>
<th>producent / typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>sprężarka</td>
<td>rotacyjna</td>
</tr>
<tr>
<td>parownik</td>
<td>lamelowy aluminiowo-miedziany</td>
</tr>
<tr>
<td>skraplacz</td>
<td>nawiązany na zbiornik</td>
</tr>
<tr>
<td>zawór rozprężny</td>
<td>termostatyczny</td>
</tr>
<tr>
<td>wentylator</td>
<td>promieniowy</td>
</tr>
<tr>
<td>sterownik</td>
<td>ST 53</td>
</tr>
<tr>
<td>grzałka</td>
<td>miedziana</td>
</tr>
</tbody>
</table>
Podgrzewacze z pompą ciepła do wody użytkowej badane są według normy PN-EN 16147. Parametry pracy podawane są dla powietrza zasilającego na poziomie 15 i 20°C oraz temperaturze wody wlotowej zimnej 10°C i ciepłej użytkowej 55°C.

Tabela 14. Dane podstawowe pomp ciepła Basic

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>j.m.</th>
<th>Basic 200</th>
<th>Basic 270</th>
<th>Basic 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>nr katalogowy</td>
<td>-</td>
<td>09-353102</td>
<td>09-355101</td>
<td>09-355201</td>
</tr>
<tr>
<td>średnia moc grzewcza</td>
<td>kW</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>COP</td>
<td>-</td>
<td>3,49<sup>1</sup></td>
<td>3,23<sup>3</sup></td>
<td>2,36<sup>1</sup></td>
</tr>
<tr>
<td>maksymalna temperatura pracy</td>
<td>°C</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>wymiary (wysokość x średnica)</td>
<td>mm</td>
<td>1500 x 670</td>
<td>1730 x 670</td>
<td>1900 x 670</td>
</tr>
<tr>
<td>ciężar</td>
<td>kg</td>
<td>120</td>
<td>130</td>
<td>150</td>
</tr>
<tr>
<td>moc akustyczna<sup>4</sup></td>
<td>dB</td>
<td>57,0</td>
<td>58,0</td>
<td>62,0</td>
</tr>
<tr>
<td>ciśnienie akustyczne<sup>5</sup></td>
<td>dB</td>
<td>46,0</td>
<td>47,0</td>
<td>51,0</td>
</tr>
<tr>
<td>maksymalna długość kanałów powietrznych</td>
<td>m</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>czynnik chłodniczy</td>
<td>-</td>
<td>R134a</td>
<td>R134a</td>
<td>R134a</td>
</tr>
<tr>
<td>ilość czynnika</td>
<td>kg</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td>pobór mocy elektrycznej pomp ciepła</td>
<td>kW</td>
<td>0,402</td>
<td>0,402</td>
<td>0,418</td>
</tr>
<tr>
<td>moc elektrycznej grzałki</td>
<td>kW</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>całkowita moc grzewcza (pompa ciepła + grzałka)</td>
<td>kW</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>napięcie i częstotliwość zasilania urządzenia</td>
<td>V/Hz</td>
<td>230/50</td>
<td>230/50</td>
<td>230/50</td>
</tr>
<tr>
<td>maksymalny pobór prądu</td>
<td>A</td>
<td>10,7</td>
<td>10,7</td>
<td>10,6</td>
</tr>
<tr>
<td>stopień ochrony</td>
<td>-</td>
<td>IP22</td>
<td>IP22</td>
<td>IP22</td>
</tr>
<tr>
<td>cykl poboru wody (zgodnie z EN-16147)</td>
<td>-</td>
<td>L</td>
<td>XL</td>
<td>XL</td>
</tr>
<tr>
<td>maksymalna objętość wody zmieszanej (V<sub>40</sub>)<sup>1</sup></td>
<td>I</td>
<td>197</td>
<td>-</td>
<td>392</td>
</tr>
<tr>
<td>temperatura referencyjna (T<sub>40</sub>)<sup>1</sup></td>
<td>°C</td>
<td>50,27</td>
<td>-</td>
<td>52,50</td>
</tr>
<tr>
<td>maksymalna objętość wody zmieszanej (V<sub>40</sub>)<sup>2</sup></td>
<td>I</td>
<td>199</td>
<td>-</td>
<td>392</td>
</tr>
<tr>
<td>temperatura referencyjna (T<sub>40</sub>)<sup>2</sup></td>
<td>°C</td>
<td>50,07</td>
<td>-</td>
<td>52,65</td>
</tr>
<tr>
<td>sugerowane zabezpieczenie elektryczne</td>
<td>-</td>
<td>C16</td>
<td>C16</td>
<td>C16</td>
</tr>
<tr>
<td>króćce przyłączeniowe</td>
<td>-</td>
<td>1<sup>1</sup> (3/4'' cyrkulacja)</td>
<td>1<sup>1</sup> (3/4'' cyrkulacja)</td>
<td>1<sup>1</sup> (3/4'' cyrkulacja)</td>
</tr>
</tbody>
</table>

¹ EN-16147 A15W10-55
² EN-16147 A20W10-55
³ PN-EN 255-3 A15/W15-45
⁴ Wg EN 12162
⁵ W odległości 2 m.

Cellem przybliżenia pojęć: maksymalna objętość wody zmieszanej i temperatura referencyjna, wartości te uzyskiwane są w badaniu wg normy PN-EN 16147. Przy ustawieniu temperatury zadanej zbiornika na 55°C i wygrzaniu zbiornika rozpoczyna się pobór wody (przy określonych warunkach), trwa on tak długo, aż woda na wylocie ze zbiornika osiągnie 40°C. Średnia temperatura w czasie tego poboru wody określana jest temperaturą referencyjną. Natomiast objętość pobranej ciepłej wody w tym czasie określana jest właśnie jako maksymalna objętość wody zmieszanej.

Tabela 15. Parametry energetyczne pomp ciepła Basic

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>j.m.</th>
<th>Basic 200</th>
<th>Basic 270</th>
<th>Basic 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>η<sub>wh</sub></td>
<td>%</td>
<td>151</td>
<td>82</td>
<td>112</td>
</tr>
<tr>
<td>roczne zużycie energii (AEC)<sup>2</sup></td>
<td>kWh</td>
<td>679</td>
<td>1661</td>
<td>1499</td>
</tr>
</tbody>
</table>

¹ Sezonowa efektywność ogrzewania wody
² Przy założeniu temperatury powietrza wlotowego na poziomie 20°C
Czas nagrzewu zbiornika zależy od temperatury powietrza zasilającego oraz zakresu temperaturowego nagrzewu wody. Przykładowo, dla pomp ciepła Basic i temperatury powietrza 15°C, podczas badań urządzenia proces ten przebiegał następująco:

![Wykres 22. Cykl nagrzewu wody przez pompę ciepła Basic 200 (A15/ W10-55)](image-url)
Czas nagrzewu (przy temperaturze powietrza 15°C) trwał łącznie 304 minuty. Średni pobór mocy w tym czasie wyniósł 402 W. W innych punktach pracy pobór prądu może się różnić. Czas potrzebny do nagrzewu wody zależy od temperatury powietrza zasilającego, poniżej zależność tę przedstawiono na wykresie.

Zatem w całym zakresie pracy można wykreślić następującą zależność pomiędzy temperaturą powietrza zasilającego, a czasem nagrzewu wody. Dodatkowo wykreślono również krzywą obrazującą zmiany mocy grzewczej oraz elektrycznej.

Najprostszym sposobem przedstawienia efektywności (COP) pomp ciepła jest porównanie mocy grzewczej do pobieranej w tym samym czasie mocy elektrycznej. Zmiany efektywności wygrzewu zostały przedstawione poniżej:

<table>
<thead>
<tr>
<th>Temperatura powietrza zasilającego [°C]</th>
<th>Średnia moc grzewcza [W]</th>
<th>Średnia moc elektryczna [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>390,06</td>
<td>304,13</td>
</tr>
<tr>
<td>15</td>
<td>304,13</td>
<td>296,08</td>
</tr>
<tr>
<td>20</td>
<td>296,08</td>
<td>289,67</td>
</tr>
<tr>
<td>35</td>
<td>289,67</td>
<td>289,67</td>
</tr>
</tbody>
</table>

Wykres 21. Czasy wygrzewu wody 10-55°C przy różnych temperaturach powietrza zasilającego (Basic 200)

Zatem w całym zakresie pracy można wykreślić następującą zależność pomiędzy temperaturą powietrza zasilającego, a czasem nagrzewu wody. Dodatkowo wykreślono również krzywą obrazującą zmiany mocy grzewczej oraz elektrycznej.

Wykres 23. Czasy wygrzewu wody 10-55°C przy różnych temperaturach powietrza zasilającego (Basic 200)

Wykres 24. Charakterystyka pompy ciepła Basic 200 w zależności od temperatury powietrza zasilającego
Najprostszym sposobem przedstawienia efektywności (COP) pompy ciepła jest porównanie mocy grzewczej do pobieranej w tym samym czasie mocy elektrycznej. Zmiany efektywności nagrzewu zostały przedstawione poniżej:

Wykres 25. Średnia efektywność pompy ciepła Basic 200 w zależności od temperatury powietrza zasilającego

COP pompy ciepła obliczane dla czasu samego nagrzewu zbiornika (przedstawione na powyższej charakterystyce) to zupełnie inna wartość niż ta wg PN-EN 16147, która uwzględnia przykładowy cykl dobory poboru wody i straty postojowe. Wartości zgodne z normą tą zostały podane powyżej w tabeli. Test wg PN-EN 16147 dla pompy ciepła Basic 200, przykładowo przy temperaturze powietrza 15°C, przedstawia się on następująco:

Wykres 26. Praca pompy ciepła Basic 200 podczas cyklu poboru wody (A15)
Podobnie prezentuje się proces nagrzewu wody dla modelu Basic 300. Podczas testów urządzenia przebiegał następująco:

Czas nagrzewania wody zależy od temperatury dolnego źródła, w tym przypadku powietrza zasilającego pompę ciepła. Poniżej przedstawiono zależność czasu nagrzewu od temperatury powietrza zasilającego dla Basic 300:
3.3.5. Opis techniczny ciepła do c.w.u. bez zbiornika - Small

Charakterystyka pompy ciepła Small:
- Klasa efektywności energetycznej: A.
- Wartość współczynnika COP: 3,75 (A15W35).
- Podgrzewanie wody do temperatury 55°C.
- Niski pobór energii: 0,375 kW.
- Możliwość podłączenia do większości wymienników pracującej instalacji.
- Możliwość współpracy z instalacją solarną.
- Sterownik z funkcjami ECO, ANTYLEGIONELLA, PARTY oraz możliwością współpracy z dodatkowym źródłem: np. instalacją solarną lub kotłem c.o.
- Obsługa pompy obiegowej dodatkowego źródła (np. solary, kocioł).
- Możliwość ustawienia harmonogramu pracy zarówno pompy ciepła jak i pompy cirkulacyjnej.
- Osuszanie i częściowe klimatyzowanie pomieszczenia podczas pracy pompy ciepła.
- Czysta energia z natury - kwalifikuje się do dofinansowania.

Rys. 31. Pompa ciepła Small

W standardzie z urządzeniem:
- Kompletny zestaw czujników temperatury.

Dodatkowo opcjonalnie:
- Czujnik do sterowania obiegiem solarnym.
- Dostępne dedykowane elementy wentylacyjne.
- Dedykowane pompy obiegowe.

Pompa ciepła Small to urządzenie przeznaczone do zapewnienia ciepłej wody użytkowej. Służy do podłączenia do odzienneznego zbiornika. Podłączenia można dokonać przez wężownicę o powierzchni min. 1 m² lub bezpośrednio pod wodę użytkową (w tym celu należy zastosować odpowiednią pompę obiegową). Pompa obiegowa wymuszająca obieg pomiędzy urządzeniem, a zbiornikiem montowana jest na instalacji. Jeżeli urządzenie podłączane jest do wężownicy to ciśnienie w tym układzie powinno wynosić 0,5-1 bar.

Rys. 32. Podłączenie pompy ciepła Small do wężownicy zbiornika biwalentnego SGW(S)B
Urządzenia te mogą pracować na powietrzu zewnętrznym lub wewnętrznym, z tym, że podobnie jak Basic czy Spectra, montowane są wewnątrz pomieszczeń. W przypadku pracy na powietrzu obiegowym z pomieszczenia, konieczne jest zapewnienie w nim odpowiedniej wentylacji oraz zachowanie minimalnej kubatury pomieszczenia na poziomie 30m³. Odległość między kanałem wlotowym a wyrzutowym powinna wynosić co najmniej 1,5 m (do oddzielenia strumieni powietrza zastosować można kolano). Pompa Small podczas pracy ochłodza i osusza powietrze. Osuszenie następuje przez wykroplenie wilgoci z powietrza, dlatego z pompy skropliny odprowadzane są wężykiem kondensatu. Ochładzanie powietrza można wykorzystać jako częściowy efekt klimatyzacyjny. Kanały powietrzne, podobnie jak w podgrzewaczach Basic i Spectra, nie powinny przekraczać 5m w linii prostej na wlocie i wylocie, każde kolano to dodatkowy opór miejscowy (odejmuje 2 m z dyspozycyjnej długości). Zakres temperatury pracy pompy Small to 7-35°C, zatem w okresie zimowym współpracują one z dodatkowym źródłem (kotłem) lub grzałką. Sterownik pompy Small może sterować dodatkową grzałką zasobnika (2 kW) - opcja. Grzałka ta zostaje umieszczona w zasobniku wody użytkowej, natomiast jej sterowanie odbywa się przy użyciu sterownika pompy ciepła. Pompa Small, podobnie jak Basic wyposażona jest w sterownik ST 53. Sterownik ten obsługuje dodatkowe źródło (pompę dodatkową kotła lub solara) oraz pompę cyrkulacyjną, posiada także wiele przydatnych funkcji, które zostały szerzej opisane w punkcie 3.3.2. opracowania. Czas nagrzewu zbiornika 200 l (10-55°C) w temperaturze 20°C zajmuje 455 minut.

3.3.6. Dane techniczne pompy ciepła – Small

W pompie ciepła Small zastosowano sprężarkę rotacyjną, parownik miedziany z lamelami aluminiowymi, termostatyczny zawór rozprężny oraz wentylator promieniowy. Sterownik pompy ciepła jest intuicyjny zarówno dla instalatora jak i użytkownika. Posiada monochromatyczny wyświetlacz dotykowy.

Tabela 18. Główne komponenty pompy ciepła Small

<table>
<thead>
<tr>
<th>część</th>
<th>producent / typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>sprężarka</td>
<td>rotacyjna</td>
</tr>
<tr>
<td>parownik</td>
<td>lamelowy aluminiowo-miedziany</td>
</tr>
<tr>
<td>skraplacz</td>
<td>płytyowy</td>
</tr>
<tr>
<td>zawór rozprężny</td>
<td>termostatyczny</td>
</tr>
<tr>
<td>wentylator</td>
<td>promieniowy</td>
</tr>
<tr>
<td>sterownik</td>
<td>ST 53</td>
</tr>
</tbody>
</table>
Tabela 19. Dane podstawowe pompy ciepła Small

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>j.m.</th>
<th>Small</th>
</tr>
</thead>
<tbody>
<tr>
<td>nr katalogowy</td>
<td></td>
<td>09-240201</td>
</tr>
<tr>
<td>średnia moc grzewcza</td>
<td>kW</td>
<td>2</td>
</tr>
<tr>
<td>COP</td>
<td></td>
<td>3,75 (A15/W35)1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,64 (A20/W10-55)2</td>
</tr>
<tr>
<td>maksymalna temperatura pracy</td>
<td>°C</td>
<td>55</td>
</tr>
<tr>
<td>wymiary [wys. x szer. x gł.]</td>
<td>mm</td>
<td>460 x 660 x 670</td>
</tr>
<tr>
<td>ciężar</td>
<td>kg</td>
<td>36</td>
</tr>
<tr>
<td>moc akustyczna 3</td>
<td>dB</td>
<td>61</td>
</tr>
<tr>
<td>ciśnienie akustyczne 4</td>
<td>dB</td>
<td>50</td>
</tr>
<tr>
<td>zakres pracy pompy</td>
<td>°C</td>
<td>+7/+35</td>
</tr>
<tr>
<td>nominalny przepływ powietrza</td>
<td>m³/h</td>
<td>261</td>
</tr>
<tr>
<td>maksymalna długość kanałów powietrznych</td>
<td>m</td>
<td>10</td>
</tr>
<tr>
<td>czynnik chłodniczy</td>
<td></td>
<td>R134a</td>
</tr>
<tr>
<td>ilość czynnika</td>
<td>kg</td>
<td>0,5</td>
</tr>
<tr>
<td>maksymalna wartość wysokiego ciśnienia</td>
<td>bar</td>
<td>25</td>
</tr>
<tr>
<td>maksymalna wartość niskiego ciśnienia</td>
<td>bar</td>
<td>11</td>
</tr>
<tr>
<td>pobór mocy elektrycznej pompy ciepła</td>
<td>kW</td>
<td>0,375</td>
</tr>
<tr>
<td>napięcie i częstotliwość zasilania urządzenia</td>
<td>V/Hz</td>
<td>230/50</td>
</tr>
<tr>
<td>maksymalny pobór prądu</td>
<td>A</td>
<td>10,55</td>
</tr>
<tr>
<td>stopień ochrony</td>
<td></td>
<td>IP22</td>
</tr>
<tr>
<td>sugerowane zabezpieczenie elektryczne</td>
<td></td>
<td>C16</td>
</tr>
<tr>
<td>króćce przyłączeniowe</td>
<td></td>
<td>¾''</td>
</tr>
</tbody>
</table>

1 Wg EN 14511; A - temperatura wlotowa powietrza; W - temperatura wody na wyjściu z pompy ciepła.

2 Wg PN-EN 16147; A - temperatura powietrza; W - zakres temperaturowy nagrzewu wody; profil poboru wody L.

3 Wg EN 12102.

4 W odległości 2 m.

5 Przy podłączeniu do urządzenia grzałki elektrycznej o mocy 2 kW.
3.3.7. Elementy wentylacyjne przeznaczone do pomp ciepła powietrze-woda do c.w.u.

Celem pobierania/wyrzutu powietrza z/do innego pomieszczenia lub na zewnątrz stosowane są elementy wentylacyjne. Przy projektowaniu tego rodzaju rozwiązania należy mieć na uwadze opory przepływu powietrza przez dany układ. Zaleca się stosowanie rur gładkich. Rury karbowane powodują zwiększone opory przepływu powietrza. W przypadku pracy pomp ciepła na powietrzu z pomieszczenia należy zwrócić uwagę na jego wentylację i zachowanie minimalnej kubatury, co szerzej zostało opisane w punktach 3.3.2; 3.3.5 opracowania.

Tabela 20. Elementy wentylacyjne do pomp ciepła Basic, Spectra, Small

<table>
<thead>
<tr>
<th>l.p.</th>
<th>numer kat.</th>
<th>nazwa</th>
<th>zdjęcie</th>
<th>przeznaczenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M-009656</td>
<td>redukcja ø200/160 mufa/nypel</td>
<td></td>
<td>Spectra, Small</td>
</tr>
<tr>
<td>2</td>
<td>M-009657</td>
<td>rura wentylacyjna ø160/160 mufa/mufa (rura sprzedawana w odcinkach 1,5 mb)</td>
<td></td>
<td>Basic, Spectra, Small</td>
</tr>
<tr>
<td>3</td>
<td>M-009658</td>
<td>kolano tłoczone ø160/160 nypel/nypel</td>
<td></td>
<td>Basic, Spectra, Small</td>
</tr>
<tr>
<td>4</td>
<td>M-009659</td>
<td>trójnik ø160/160 nypel/nypel dwustr. z przepustnicą</td>
<td></td>
<td>Basic, Spectra, Small</td>
</tr>
<tr>
<td>5</td>
<td>M-009660</td>
<td>czerpnia ścienna ø250 nypel</td>
<td></td>
<td>Basic, Spectra, Small</td>
</tr>
<tr>
<td>6</td>
<td>M-009661</td>
<td>redukcja ø250/160 mufa(do czerpni)/nypel</td>
<td></td>
<td>Basic, Spectra, Small</td>
</tr>
<tr>
<td>7</td>
<td>M-009663</td>
<td>kolano ø200/200 mufa/nypel</td>
<td></td>
<td>Spectra, Small</td>
</tr>
<tr>
<td>8</td>
<td>M-009664</td>
<td>uchwyt do rur ø160</td>
<td></td>
<td>Basic, Spectra, Small</td>
</tr>
<tr>
<td>9</td>
<td>M-009665</td>
<td>złącze ø160/160 nypel/nypel</td>
<td></td>
<td>Basic, Spectra, Small</td>
</tr>
</tbody>
</table>
Poniżej przedstawiono przykładowe konfiguracje przy zastosowaniu wyżej wyróżnionych elementów wentylacyjnych.

Pierwsza konfiguracja przedstawia podłączenie pompy ciepła Spectra w przypadku pobierania powietrza z zewnątrz i wyrzutu do sąsiedniego pomieszczenia. Na włocie zastosowano kolano i rurę oraz opcjonalnie redukcję z czerpnią powietrza. Odnosząc to do dyspozycyjnej długości 5 m kanału prostego: kolano 2 m, rura - 1,5 m, co sumarycznie daje wartość mniejszą niż 5 m, zatem prawidłową. Na kanale wylotowym: kolano - 2 m, rura - 1,5 m, co również daje prawidłowy rezultat.

Kolejna przykładowa konfiguracja: pompa ciepła Basic; pobór powietrza z pomieszczenia lub z zewnątrz, wyrzut powietrza na zewnątrz. Dwa miejsca poboru możliwe są przy zastosowaniu trójnika z przepustnicą. Zastosowano dodatkowo rurę oraz standardowe kolano. Odnosząc to do dyspozycyjnej długości 5 m kanału prostego, na kanale włotowym zastosowano: rura - 1,5 m, trójnik - 2 m, rura - 0,5 m, natomiast kanał wylotowy: rura - 1,5 m, kolano - 2 m, rura - 0,5 m, co łącznie daje wartości nieprzekraczające 5 m (prawidłowo).

Przykładowa konfiguracja kanałów dla pompy ciepła Small zakłada pobór powietrza bezpośrednio z pomieszczenia oraz wyrzut na zewnątrz. Na włocie nie zostały zastosowane żadne z elementów, natomiast na wylocie: redukcja, kolano i dwa odcinki rury. Odnosząc do dyspozycyjnych 5 m kanału prostego na wylocie: rura - 1 m, kolano - 2 m, rura - 0,5 m, co daje wartość prawidłową, tj. mniejszą od 5 m.
4. POMPY CIEPŁA ZIEMIA-WODA

Pompy ciepła pracujące w systemie ziemia-woda, czyli jednostki pozyskujące ciepło z gruntu, to najtańsze w eksploatacji spośród bezobsługowych źródeł ciepła. Do pozyskania ciepła z gruntu konieczne jest wykonanie wymiennika gruntowego.

Zalety pomp ciepła ziemia-woda:
- czyste źródło ciepła
- niskie koszty eksploatacyjne
- stabilne źródło ciepła
- powszechna dostępność dolnego źródła - gruntu
- bezobsługowość
- brak problemu magazynowania paliwa
- bezpieczeństwo - brak możliwości wybuchu czy zaczadzenia

Niedogodności związane z instalacjami z pompą ciepła ziemia-woda:
- konieczność wykonania wymiennika gruntowego, co podnosi koszty inwestycyjne
- ryzyko niepoprawnego wykonania wymiennika dolnego źródła, co skutkuje niepoprawną pracą urządzenia, bądź ją uniemożliwia

W ofercie Galmet model pompy ciepła pracującej w systemie ziemia-woda to:
- Maxima - do c.o. i c.w.u.

4.1. Grunt jako dolne źródło

Dla pozyskania ciepła z gruntu konieczne jest wykonanie wymiennika gruntowego w postaci: sond pionowych lub wymiennika poziomego.

W urządzeniach działających w systemie ziemia-woda ciepło jest odbierane z gruntu przez czynnik pośredniczący (glikol). Dolne źródła pomp gruntowych zostaną szerzej opisane poniżej. Przewagą gruntu jest bardziej stabilna temperatura dolnego źródła, niż w przypadku pomp powietrznych. Poniżej pewnej głębokości grunt utrzymuje stałą temperaturę w ciągu całego roku, natomiast w płytszych warstwach temperatura ta zmienia się w ciągu roku.

![Diagram](image)

Rys. 36. Zmiany temperatury gruntu w ciągu roku w zależności od głębokości

Poniżej głębokości 15m temperatura gruntu utrzymuje się na stałym poziomie - ok. 10°C. Sondy pionowe wykorzystują w większości ciepło geotermalne. W przypadku wymienników poziomych temperatura gruntu zmienia się w ciągu roku w większym zakresie. Strumień ciepła geotermalnego dla wymiennika poziomowego jest praktycznie pomijalny, a korzysta on z ciepła pochodzącego z promieniowania słonecznego, jego regenerację wspomagają też opady deszczu. Zalecane jest dobor wymiennika gruntowego, który powinien mieć stosunkowo niską temperaturę powracającą z gruntu glikolu (to zaś powoduje niższą efektywność pomp, dlatego też jego dobrze powinien być starannie przeprowadzony z uwzględnieniem lokalnych warunków grunty). W przypadku instalacji pomp gruntowych istnieje wysokie ryzyko wyeksploatowania źródła ciepła przy nieumyślnym zaprojektowaniu wymiennika gruntowego.
4.2. Pompa ciepła ziemia-woda do c.o. i c.w.u. - Maxima

Urządzenia grzewcze zapewniające ogrzewanie oraz wodę użytkową, czerpiące ciepło z gruntu. W ofercie Galmet z tego rodzaju pomp ciepła oferowany jest model Maxima.

Zalety pomp ziemia-woda do c.o. i c.w.u.:

- Cicha praca urządzenia
- Bezobsługowość - zapewniają zarówno wodę grzewczą jak i użytkową
- Nowoczesny design

4.2.1. Zasada działania

4.2.2. Opis techniczny pomp ciepła Galmet - Maxima

Typoszereg Maxima obejmuje osiem jednostek:

- Maxima 7 GT
- Maxima 10 GT
- Maxima 12 GT
- Maxima 16 GT
- Maxima 20 GT
- Maxima 28 GT
- Maxima 34GT
- Maxima 42 GT
Charakterystyka typoszeregu pomp ciepła Maxima 7-16 GT:
- Najwyższa klasa energetyczna: A++
- Wysokie COP: do 4,5 (B0W35).
- Pierwsza polska pompa ciepła w systemie ziemia-woda z certyfikatem EHPA-Q.
- Możliwość uzyskania dofinansowania na terenie Niemiec - wpis na listę BAFA.
- Niezawodna sprężarka typu Scroll.
- Możliwość grzania pomieszczeń, wody użytkowej, wody basenowej.
- System pogodowy dopasowuje parametry pracy pompy do warunków atmosferycznych.
- Możliwość ustawienia harmonogramu pracy zarówno pompy ciepła jak i pompy cyrkulacyjnej.
- Możliwość sterowania grzałką elektryczną zasobnika, pompą cyrkulacyjną, obiegami grzewczymi.
- Elektroniczny zawór rozprężny maksymalizujący wydajność.
- Stała wydajność w czasie całego sezonu grzewczego.
- Wykorzystuje Odnawialne Źródło Energii.
- Kwalifikuje się do dofinansowania.

W standardzie z urządzeniem:
- Kompletny zestaw czujników temperatury.
- Moduł internetowy do zdalnego sterowania pracą urządzenia.
- Soft Start (łagodny rozruch sprężarki), który zapewnia wydłużoną żywotność urządzenia i ciche uruchamianie.
- Elektroniczne pompy obiegowe zabudowane w urządzeniu.
- Przełączający zawór trójdrogowy do realizacji c.w.u. zabudowany w urządzeniu.
- Inteligentne sterowanie kolorowym panelem dotykowym z funkcją termostatu.

Dodatkowo opcjonalnie:
- Dedykowany wymiennik Maximus z maksymalnie dużą wężownicą spiralną, anodą tytanową i grzałką 2 kW.

Charakterystyka typoszeregu pomp ciepła Maxima 20-42 GT:
- Najwyższa klasa energetyczna: A++
- Wysokie COP: do 4,67 (B0W35).
- Wysoka temperatura zasilania: do 65°C (wysokotemperaturowa pompa ciepła).
- Idealna do budynków o zwiększonym zapotrzebowaniu na energię cieplną.
- Możliwość uzyskania dofinansowania na terenie Niemiec - wpis na listę BAFA.
- Niezawodna sprężarka typu Scroll z EVI.
- Możliwość grzania pomieszczeń, wody użytkowej, wody basenowej.
- System pogodowy dopasowuje parametry pracy pompy do warunków atmosferycznych.
- Możliwość ustawienia harmonogramu pracy zarówno pompy ciepła jak i pompy cyrkulacyjnej.
- Możliwość sterowania zworem trójdrgowym do realizacji c.w.u., grzałką elektryczną zasobnika, pompą cyrkulacyjną, obiegami grzewczymi.
- Elektroniczny zawór rozprężny maksymalizujący wydajność.
- Stała wydajność w czasie całego sezonu grzewczego.
- Wykorzystuje Odnawialne Źródło Energii.
- Kwalifikuje się do dofinansowania.

W standardzie z urządzeniem:
- Kompletny zestaw czujników temperatury.
- Moduł internetowy do zdalnego sterowania pracą urządzenia.
- Soft Start (łagodny rozruch sprężarki), który zapewnia wydłużoną żywotność urządzenia i ciche uruchamianie.
- Elektroniczne pompy obiegowe dostarczane wraz z urządzeniem.
- Inteligentne sterowanie kolorowym panelem dotykowym z funkcją termostatu.

Dodatkowo opcjonalnie:
- Możliwość zakupu dedykowanego zaworu trójdrogowego z silownikiem do realizacji funkcji c.w.u.

Pompa ciepła Maxima wyposażona została w elektroniczne pompy obiegowe o modulowanej mocy, dopasowujace się do pracy układu, charakteryzujące się niskim poborem prądu. Pompy obiegowe przetłaczają przez urządzenie glikol oraz wodę. W modelach 7-16 GT są one zabudowane w urządzeniu, natomiast w modelach 20-42 GT są elementem zewnętrznym, lecz dostarczanym w standardzie wraz z urządzeniem.

Elektroniczny zawór rozprężny precyzyjnie reguluje pracę urządzenia, by maksymalnie wykorzystać potencjał energii zgromadzony w gruncie. Wydłuża też żywotność sprężarki nie dopuszczając do sytuacji, w której wprowadzimy do niej nieodparowany czynnik chłodniczy.

Pompę ciepła Maxima poddano testom w niezależnym zagranicznym akredytowanym laboratorium. Określono klasy energetyczne, sezonowe współczynniki efektywności (SCOP), precyzyjne wartości mocy grzewczych oraz COP w różnych punktach pracy urządzenia. Wartości COP uwzględniają również pobór mocy przez pompy obiegowe, zatem nie należy ich dodatkowo uwzględniać przy sporządzaniu symulacji pracy urządzenia. Poniżej przykładowy wykres dla Maximi 16 GT z przeprowadzonych badań (aplikacja niskotemperaturowa - W35).
Produkuje w Polsce
Wybierając schemat B sterownik pompy ciepła obsłuży instalację ogrzewania podłogowego podłączoną bezpośrednio. Zrealizuje to pompę obiegową, która zabudowana jest w pompie ciepła (Maxima 7-16 GT) lub zamontowana na zewnątrz (Maxima 20-42 GT). Dodatkowo obsługa zaworu przelączającego c.w.u., również zabudowanego w urządzeniu (Maxima 7-16 GT), a także grzałki zasobnika oraz pompę cyrkulacyjną.

Schemat C rozszerzony jest o bufor wody grzewczej, mieszacz podłogówki i pompę obiegową dla pętli ogrzewania podłogowego. Pozostałe elementy jak w schemacie B.

Schemat D przewiduje obsługę obiegu grzejnikowego. Pompa ciepła ładuje bufor, a dalej ciepło dystrybuowane jest przy użyciu pomp obiegowych. Ponadto realizowana jest ciepła woda użytkowa, a także obsługa pompy cyrkulacyjnej, czy też dodatkowej grzałki zbiornika c.w.u.

Schemat E przewiduje obsługę obiegu zarówno grzejnikowego jak i podłogowego za pośrednictwem mieszacza. Ciepło magazynowane jest w buforze, a dalej dwie pompy obiegowe transportują ciepło dla dwóch obiegów grzewczych. Schemat E realizuje również ciepłą wodę użytkową. Standardowo sterownik jak w powyższych schematach obsługuje pompę cyrkulacyjną oraz dodatkową grzałkę zbiornika.

Panel sterujący, standardowo zamontowany na pompie ciepła, jak wcześniej już wspomniano może pełnić funkcję termostatu danego obiegu. Aby to zrealizować należy jedynie umieścić go w pomieszczeniu, gdzie ma kontrolować temperaturę. Maksymalna długość przewodu łączącego sterownik z panelem sterującym wynosi 30 m.
4.2.3. Dane techniczne pomp ciepła Galmet – Maxima

Panel sterujący, standardowo zamontowany na pompie ciepła, jak wcześniejsiej już wspomniano może pełnić funkcję termostatu danego obiegu. Aby to zrealizować należy jedynie umieścić go w pomieszczeniu, gdzie ma kontrolować temperaturę. Maksymalna długość przewodu łączącego sterownik z panelem sterującym wynosi 30 m.

Tabela 21. Główne komponenty pomp ciepła Maxima

<table>
<thead>
<tr>
<th>część</th>
<th>Maxima 7 GT</th>
<th>Maxima 10 GT</th>
<th>Maxima 12 GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>sprężarka</td>
<td>scroll (spiralna) ZH</td>
<td>scroll (spiralna) ZH</td>
<td>scroll (spiralna) ZH z EVI</td>
</tr>
<tr>
<td>parownik</td>
<td>płytny</td>
<td>płytny</td>
<td>płytny</td>
</tr>
<tr>
<td>skraplacz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zawór rozpędu</td>
<td>elektroniczny</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pompa obieg. GZ</td>
<td>UPM3 25-75 Flex AS 130</td>
<td>UPML GEO 25-105 130 PWM</td>
<td>Magna 3 32-100</td>
</tr>
<tr>
<td>pompa obieg. DZ</td>
<td>UPML GEO 25-105 130 PWM</td>
<td>Magna 3 32-100</td>
<td>Magna 3 32-120</td>
</tr>
<tr>
<td>sterownik</td>
<td>EcoTRONIC 100-G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grzałka</td>
<td>7 kW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modele Maxima 7 GT-12 GT zostały wyposażone w pompę obiegową FLEX AS sterowaną sygnałem PWM. Aby utrzymać odpowiednie różnice temperatur w skraplaczu pompy ciepła, sterownik podaje odpowiedni sygnał PWM przez co prędkość pompy zależnie od potrzeb zostaje zmniejszona lub zwiększona. FLEX AS posiada diody sygnalizacyjne, jedną mówiącą o statusie pracy oraz cztery diody, które podczas pracy są wskaźnikiem poziomu wydajności pompy. Maksymalna wysokość podnoszenia pompy obiegowej UPM3 25-75 Flex AS 130 wynosi 7,5m. Natomiast maksymalny pobór prądu to 60W. FLEX AS to pompa obiegowa najwyższej klasy energetycznej o współczynniku EEI ≤20.

Pompy obiegowe są integralną częścią pompy ciepła, zatem podczas badań pobór ich mocy został uwzględniony w określaniu efektywności urządzenia.

Tabela 22. Nominalny przepływ przez skraplacz pomp ciepła Maxima 7, 10 i 12 GT oraz pobór mocy pomp obiegowych (UPM3 25-75 Flex AS 130)

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>Maxima 7 GT</th>
<th>Maxima 10 GT</th>
<th>Maxima 12 GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominalny przepływ wody przez skraplacz [m³/h]</td>
<td>1,25</td>
<td>1,69</td>
<td>2,15</td>
</tr>
<tr>
<td>nominalny pobór mocy pomp obiegowej [W]</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
</tbody>
</table>

Pobór mocy pomp obiegowych został uwzględniony przy wyznaczaniu COP pomp ciepła. Nie należy zatem dodatkowo uwzględniać go przy tworzeniu symulacji kosztów eksploatacyjnych.
Przepływ przez skraplacz w modelu Maxima 16 GT oraz parownik w modelach 7-16 GT zapewnia, również sterowana sygnałem PWM, elektroniczna pompa obiegowa - UPML GEO 25-105 130 PWM. Niskie zużycie energii zapewnia najwyższa klasa energetyczna (EEI< 0,23). Maksymalna wysokość podnoszenia pompy obiegowej wynosi 10,5 m. Natomiast maksymalny pobór prądu to 140 W.

Tabela 23. Nominalny przepływ przez skraplacz pompy ciepła Maxima 16 GT oraz pobór mocy pompy obiegowej (UPML GEO 25-105 130 PWM)

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>Maxima 16 GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominalny przepływ wody przez skraplacz [m³/h]</td>
<td>2,85</td>
</tr>
<tr>
<td>nominalny pobór mocy pompy obiegowej [W]</td>
<td>80</td>
</tr>
</tbody>
</table>

Pobór mocy pomp obiegowych został uwzględniony przy wyznaczaniu COP pompy ciepła. Nie należy zatem dodatkowo uwzględniać go przy tworzeniu symulacji kosztów eksploatacyjnych.

Tabela 24. Nominalny przepływ przez parownik pompy ciepła Maxima 7-16 GT oraz pobór mocy pomp obiegowych (UPML GEO 25-105 130 PWM)

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>Maxima 7 GT</th>
<th>Maxima 10 GT</th>
<th>Maxima 12 GT</th>
<th>Maxima 16 GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominalny przepływ wody przez parownik [m³/h]</td>
<td>1,71</td>
<td>2,30</td>
<td>2,99</td>
<td>3,94</td>
</tr>
<tr>
<td>nominalny pobór mocy pompy obiegowej [W]</td>
<td>55</td>
<td>60</td>
<td>85</td>
<td>110</td>
</tr>
</tbody>
</table>

Pobór mocy pomp obiegowych został uwzględniony przy wyznaczaniu COP pompy ciepła. Nie należy zatem dodatkowo uwzględniać go przy tworzeniu symulacji kosztów eksploatacyjnych.
Przepływ w górnym i dolnym źródele (przez skraplaczy i parownik) w modelach Maxima 20-34GT zapewnia pompa obiegowa Magna 3 32-100. Magna 3 to elektroniczna pompa obiegowa sterowana sygnałem 0-10 V. Rozbudowany interfejs użytkownika, wyposażony w wyświetlacz TFT, zapewnia komfort użytkowania. Panel sterujący z przyciskami z silikonu wysokiej jakości, umożliwia intuityczną obsługę. Maksymalna wysokość podnoszenia pompy obiegowej Magna 3 32-100 wynosi 10 m. Natomiast maksymalny pobór prądu to 180W. Magna 3 32-100 to pompa obiegowa najwyższej klasy energetycznej o współczynniku EEI ≤ 19.

Pobór mocy przez pompę obiegową podczas badań został uwzględniony w określaniu efektywności urządzenia.

Tabela 25. Nominalny przepływ przez skraplacz pomp ciepła Maxima 20, 28 i 34GT oraz pobór mocy pomp obiegowych (Magna 3 32-100)

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>Maxima 20 GT</th>
<th>Maxima 28 GT</th>
<th>Maxima 34GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominalny przepływ wody przez skraplaczy [m³/h]</td>
<td>3,40</td>
<td>4,87</td>
<td>5,69</td>
</tr>
<tr>
<td>nominalny pobór mocy pompy obiegowej [W]</td>
<td>60</td>
<td>100</td>
<td>120</td>
</tr>
</tbody>
</table>

Pobór mocy pomp obiegowych został uwzględniony przy wyznaczaniu COP pomp ciepła. Nie należy zatem dodatkowo uwzględniać go przy tworzeniu symulacji kosztów eksploatacyjnych.

Tabela 26. Nominalny przepływ przez parownik pomp ciepła Maxima 20, 28 i 34GT oraz pobór mocy pomp obiegowych (Magna 3 32-100)

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>Maxima 20 GT</th>
<th>Maxima 28 GT</th>
<th>Maxima 34GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominalny przepływ glikolu przez parownik [m³/h]</td>
<td>4,72</td>
<td>6,80</td>
<td>7,82</td>
</tr>
<tr>
<td>nominalny pobór mocy pompy obiegowej [W]</td>
<td>90</td>
<td>125</td>
<td>135</td>
</tr>
</tbody>
</table>

Pobór mocy pomp obiegowych został uwzględniony przy wyznaczaniu COP pomp ciepła. Nie należy zatem dodatkowo uwzględniać go przy tworzeniu symulacji kosztów eksploatacyjnych.
Przypływ w górnym i dolnym źródle (przez skraplacz i parownik) w modelu Maxima 42 GT zapewnia pompa obiegowa Magna 3 32-120. Maksymalna wysokość podnoszenia pompy obiegowej Magna 3 32-120 wynosi 12 m. Natomiast maksymalny pobór prądu to 336 W. Magna 3 32-120 to pompa obiegowa najwyższej klasy energetycznej o współczynniku EEI ≤ 18.

Tabela 27. Nominalny przepływ przez skraplacz pompy ciepła Maxima 42 GT oraz pobór mocy pompy obiegowej (Magna 3 32-120)

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>Maxima 42 GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominalny przepływ wody przez skraplacz [m³/h]</td>
<td>7,16</td>
</tr>
<tr>
<td>nominalny pobór mocy pompy obiegowej [W]</td>
<td>150</td>
</tr>
</tbody>
</table>

* Pobór mocy pomp obiegowych został uwzględniony przy wyznaczaniu COP pompy ciepła. Nie należy zatem dodatkowo uwzględniać go przy tworzeniu symulacji kosztów eksploatacyjnych.

Tabela 28. Nominalny przepływ przez parownik pompy ciepła Maxima 42 GT oraz pobór mocy pompy obiegowej (Magna 3 32-120)

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>Maxima 42 GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominalny przepływ glikolu przez parownik [m³/h]</td>
<td>9,91</td>
</tr>
<tr>
<td>nominalny pobór mocy pompy obiegowej [W]</td>
<td>190</td>
</tr>
</tbody>
</table>

* Pobór mocy pomp obiegowych został uwzględniony przy wyznaczaniu COP pompy ciepła. Nie należy zatem dodatkowo uwzględniać go przy tworzeniu symulacji kosztów eksploatacyjnych.
Wartości mocy grzewczych, chłodniczych, elektrycznych i COP zależne są od temperatur górnego i dolnego źródła, jak wcześniej wykazano. Nominalne parametry pracy zamieszczone poniżej w tabeli to B0W35 i B0W55.

Tabela 29. Dane podstawowe pompy ciepła Maxima specyfikacja

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>Maxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>mocy grzewczej B0W35<sup>1</sup></td>
<td>kW 7,25 9,85 12,50 16,57 19,60 28,10 32,85 41,30</td>
</tr>
<tr>
<td>mocy grzewczej B0W55<sup>1</sup></td>
<td>kW 6,85 9,23 11,80 15,48 20,10 28,15 34,10 41,91</td>
</tr>
<tr>
<td>COP</td>
<td>- 4,32 4,46 4,50 4,40 4,59 4,67 4,40 4,53</td>
</tr>
<tr>
<td>COP</td>
<td>- 2,75 2,88 2,86 2,87 3,02 3,01 2,85 3,08</td>
</tr>
<tr>
<td>moc elektryczna</td>
<td>kW 1,68 2,21 2,78 3,77 4,27 6,02 7,47 9,12</td>
</tr>
<tr>
<td>moc elektryczna</td>
<td>kW 2,49 3,21 4,12 5,39 6,66 9,35 11,96 13,61</td>
</tr>
<tr>
<td>wymiary [wys. x szer. x gł.]</td>
<td>mm 1060 x 590 x 720 1105 x 730 x 925</td>
</tr>
<tr>
<td>przyłącza hydrauliczne</td>
<td>- 1" 1" 1" 1" 5/4" 5/4" 6/4" 6/4"</td>
</tr>
<tr>
<td>maksymalna temperatura glikolu</td>
<td>°C 20 60 65</td>
</tr>
<tr>
<td>minimalna temperatura glikolu</td>
<td>°C -5</td>
</tr>
<tr>
<td>maksymalna temperatura zasilania</td>
<td>°C</td>
</tr>
<tr>
<td>czynnik chłodniczy</td>
<td>- R410A</td>
</tr>
<tr>
<td>ilość czynnika</td>
<td>kg 2,1 2,4 2,7 2,9 4,0 5,5 6,0 7,0</td>
</tr>
<tr>
<td>moc grzałki elektrycznej</td>
<td>kW 7</td>
</tr>
<tr>
<td>moc akustyczna<sup>2</sup></td>
<td>dB 44,0 45,0 47,0 49,3 58,5 60,5 62,0 63,4</td>
</tr>
<tr>
<td>ciśnienie akustyczne<sup>3</sup></td>
<td>dB 33,0 34,0 36,0 38,3 47,5 49,5 51,0 52,4</td>
</tr>
<tr>
<td>napięcie i częstotliwość zasilania</td>
<td>V/Hz 400/50</td>
</tr>
</tbody>
</table>

Wg EN-14511. **Wg EN-12102. **W odległości 2 m. **Soft start stosowany jest w standardzie w pompach ciepła Maxima.

Wykres 34. Charakterystyki pompy obiegowej Magna 3 32-120

Produkujemy w Polsce
Poniżej przedstawiono obszar pracy urządzenia. Maksymalna i minimalna temperatura wody dotyczy zasilania obiegu grzewczego, czyli na wyjściu z pompą ciepła. Zakres temperatur glikolu wynosi od -5 do 20°C.

Tabela 30. Obszar pracy pomp ciepła Maxima

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>55</td>
<td>20</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>0</td>
<td>60</td>
<td>20</td>
<td>65</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>20</td>
<td>65</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>35</td>
<td>65</td>
<td>40</td>
</tr>
</tbody>
</table>

![Wykres 31. Obszar pracy pomp ciepła Maxima 7-16 GT](image1)

![Wykres 32. Obszar pracy pomp ciepła Maxima 16GT-20-42GT](image2)

Wykres 35. Obszar pracy pomp ciepła Maxima 7-16 GT

Wykres 36. Obszar pracy pomp ciepła Maxima 20-42 GT

Tabela 31. Parametry energetyczne pomp ciepła Maxima

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>j.m.</th>
<th>Maxima</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 GT</td>
<td>10 GT</td>
</tr>
<tr>
<td>SCOP (1)</td>
<td>-</td>
<td>4,56</td>
</tr>
<tr>
<td>(\eta_s) (1)</td>
<td>%</td>
<td>174,3</td>
</tr>
<tr>
<td>klasa energetyczna</td>
<td>-</td>
<td>A++</td>
</tr>
<tr>
<td>(P_{\text{design}})</td>
<td>kW</td>
<td>8,30</td>
</tr>
</tbody>
</table>

\(1\) Sezonowa efektywność ogrzewania pomieszczeń

Tabela 32. Pozostałe informacje instalacyjne - Maxima

<table>
<thead>
<tr>
<th>specyfikacja</th>
<th>Maxima</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 GT</td>
</tr>
<tr>
<td>kabel zasilający</td>
<td>rodzaj</td>
</tr>
<tr>
<td></td>
<td>długość</td>
</tr>
<tr>
<td>przewód panel sterującego</td>
<td>rodzaj</td>
</tr>
<tr>
<td></td>
<td>długość</td>
</tr>
<tr>
<td>czujnik temperatury (bufor, zbiornik c.w.u.)</td>
<td>rodzaj</td>
</tr>
<tr>
<td></td>
<td>długość</td>
</tr>
<tr>
<td>czujnik temperatury (obiegi grzewcze)</td>
<td>rodzaj</td>
</tr>
<tr>
<td></td>
<td>długość</td>
</tr>
<tr>
<td>przewód (zawór przelączający trójdrógowy c.w.u.)</td>
<td>rodzaj</td>
</tr>
<tr>
<td></td>
<td>długość</td>
</tr>
<tr>
<td>pompy obiegowe (górnego i dolnego źródła)</td>
<td>rodzaj</td>
</tr>
<tr>
<td></td>
<td>długość</td>
</tr>
<tr>
<td>pompy obiegowe (obiegów grzewczych, cyrkulacyjna)</td>
<td>rodzaj</td>
</tr>
<tr>
<td>stopień ochrony</td>
<td>IP24</td>
</tr>
<tr>
<td>przyłącza hydrauliczne (1)</td>
<td>1'' mosiądz</td>
</tr>
<tr>
<td></td>
<td>5/4'' mosiądz</td>
</tr>
<tr>
<td></td>
<td>6/4'' mosiądz</td>
</tr>
</tbody>
</table>

\(1\) Istnieje możliwości przedłużenia przewodu do maksymalnie 30 m.

\(2\) Istnieje możliwości przedłużenia przewodu do maksymalnie 15 m.

\(3\) Nie należy redukować średnicy wewnętrznej rury, gdyż powoduje to opory przepływu.

4.2.4. Charakterystyki pomp ciepła Galmet - Maxima

Dla każdej jednostki typoszeregu stworzono charakterystyki przy stałej temperaturze glikolu: 0°C oraz zmiennej temperaturze wody na wyjściu z pompie ciepła. Temperatura zasilania 35°C odnosi się do zastosowań niskotemperaturowych (ogrzewanie podłogowe), natomiast 55°C do

Produkujemy w Polsce
zastosowania wysokotemperaturowych (ogrzewanie grzejnikowe). Na poniższych wykresach oznaczono etykietami zmienność wartości COP. Przy stałej temperaturze glikolu moc chłodnicza oraz COP maleje wraz ze wzrastającą temperaturą górnego źródła, natomiast pobór mocy elektrycznej rośnie. Nominalne parametry urządzenia określane są w punkcie pracy B0W35.

Panel sterujący, standardowo zamontowany na pompie ciepła, posiada funkcję termostatu danego obiegu. Aby wcześniejsi wspomniano może pełnić funkcję termostatu danego obiegu. Aby

nie należy redukować średnicy wewnętrznej rury, gdyż powoduje to opory przepływu wg 14825

Pozostałe informacje instalacyjne

<table>
<thead>
<tr>
<th>Temperatura wyjściowa górnego źródła (wody) [°C]</th>
<th>Ważne informacje</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>COP</td>
</tr>
<tr>
<td>40</td>
<td>moc grzewcza</td>
</tr>
<tr>
<td>45</td>
<td>moc chłodnicza</td>
</tr>
<tr>
<td>50</td>
<td>moc elektryczna</td>
</tr>
<tr>
<td>55</td>
<td>moc elektryczna</td>
</tr>
</tbody>
</table>

Wykres 37. Charakterystyka Maxima 7 GT (B0)

Wykres 38. Charakterystyka Maxima 10 GT (B0)

Wykres 39. Charakterystyka Maxima 12 GT (B0)
Warto zwrócić uwagę na różnice w charakterystykach modeli 7-16 GT, w których zastosowana jest standardowa sprężarka scroll i 20-42 GT, w których zastosowano sprężarkę scroll z technologią EVI. Technologia ta pozwala na utrzymanie wysokiej mocy grzewczej przy wzroście temperatury górnego źródła.

Standardowo pompy ciepła bada się zgodnie z normą przy temperaturze glikolu 0°C (na wejściu do pompy ciepła), lecz w rzeczywistości temperatura ta jest zmienna w ciągu całego roku, a zainstalowana pompa ciepła rzadko pracuje w warunkach znamionowych. Osiągana efektywność urządzenia, niż w warunkach znamionowych. Zmiany temperatury dolnego źródła pociągają za sobą również zmiany mocy grzewczej, chłodniczej i elektrycznej. Poniżej przedstawiono charakterystyki pomp ciepła Maxima dla temperatur glikolu: 10, 5, 0, -5°C.

Standardowo pompy ciepła bada się zgodnie z normą przy temperaturze glikolu 0°C (na wejściu do pompy ciepła), lecz w rzeczywistości temperatura ta jest zmienna w ciągu całego roku, a zainstalowana pompa ciepła rzadko pracuje w warunkach znamionowych. Osiągana efektywność urządzenia, niż w warunkach znamionowych. Zmiany temperatury dolnego źródła pociągają za sobą również zmiany mocy grzewczej, chłodniczej i elektrycznej. Poniżej przedstawiono charakterystyki pomp ciepła Maxima dla temperatur glikolu: 10, 5, 0, -5°C.
Wykres 45. Charakterystyka pompy ciepła Maxima 7 GT dla temperatur glikolu: -5, 0, 5, 10°C
Wykres 46. Charakterystyka pompy ciepła Maxima 10 GT dla temperatur glikolu: -5, 0, 5, 10°C
Wykres 47. Charakterystyka pompy ciepła Maxima 12 GT dla temperatur glikolu: -5, 0, 5, 10°C
Wykres 48. Charakterystyka pompy ciepła Maxima 16 GT dla temperatur glikolu: -5, 0, 5, 10°C.
Wykres 49. Charakterystyka pompy ciepła Maxima 20 GT dla temperatur glikolu: -5, 0, 5, 10°C
Wykres 50. Charakterystyka pompy ciepła Maxima 28 GT dla temperatur glikolu: -5, 0, 5, 10°C
Wykres 51. Charakterystyka pompy ciepła Maxima 34GT dla temperatur glikolu: -5, 0, 5, 10°C
Wykres 52. Charakterystyka pompy ciepła Maxima 42 GT dla temperatur glikolu: -5, 0, 5, 10°C
4.3. Dolne źródła pomp gruntowych pomp ciepła

Dolnym źródłem gruntowej pompy ciepła (Maxima) może być sonda pionowa lub wymiennik poziomy. Rury wymiennika wypełniane są cieczą niskokrzepną, przykładowo glikolem propylenowym o stężeniu 30-35% i temperaturze krzepnięcia -15°C. Medium transportujące ciepło nie może powodować zanieczyszczeń wód gruntowych czy też gleby, w przypadku ewentualnego wycieku.

4.3.1. Sonda pionowa

Sonda pionowa wykorzystuje ciepło geotermalne, lecz o jego strumieniu możemy mówić dopiero poniżej 15-25 m. W płytszych warstwach gleby, tak zwanej warstwie neutralnej, jest on pomijalnie mały. Regenerację zapewnia tam promieniowanie słoneczne, wody opadowe. Stąd też nietrafionym pomysłem byłoby zastosowanie kilku krótkich odwiertów zamiast jednego głębokiego, gdyż w przypadku sondy pionowej szczególnie zależy nam na pozyskiwaniu ciepła geotermalnego. Aby pobierać ciepło za pośrednictwem sondy pionowej konieczne jest wykonanie odwiertu. W przypadku prac wiertniczych trzeba pamiętać o koniecznych pozwoleniach, czy też wymaganych projektach zgodnie z obowiązującym prawem geologicznym i górniczym. Odwietr o głębokości powyżej 30 m zawsze wymaga sporządzenia projektu robót geologicznych. Projekt ten następnie zgłaszany jest w starostwie. W przypadku odwiertów na potrzeby dolnych źródeł pompy ciepła mówimy o głębokości odwiertu zazwyczaj 70-100 m. W tabeli poniżej wyróżniono ten przypadek: wymagany jest projekt robót geologicznych oraz, jeśli odwiert znajduje się na obszarze górniczym, plan ruchu zakładu górniczego.

Tabela 33. Wymagane dokumenty przy wykonywaniu odwiertu

<table>
<thead>
<tr>
<th>głębokość odwiertu [m]</th>
<th>poza obszarem górniczym</th>
<th>na obszarze górniczym</th>
<th>poza obszarem górniczym</th>
<th>na obszarze górniczym</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤30</td>
<td>nie</td>
<td>tak</td>
<td>nie</td>
<td>nie</td>
</tr>
<tr>
<td>≤100</td>
<td>tak</td>
<td>tak</td>
<td>nie</td>
<td>tak</td>
</tr>
<tr>
<td>>100</td>
<td>tak</td>
<td>tak</td>
<td>tak</td>
<td>tak</td>
</tr>
</tbody>
</table>

Dodatkowo po zakończeniu prac należy sporządzić dokumentację geologiczną, a następnie przekazać ją organowi administracji geologicznej.

Wyróżnia się trzy podstawowe rodzaje wymienników wprowadzanych do odwiertów:

- Pojedyncza U-rura
- Podwójna U-rura
- Rura współosiowa
Przy umieszczaniu rury w odwiercie stosuje się specjalny obciążnik, ponadto używa się dystansowników, czyli elementów pozwalających utrzymać odpowiednią odległość między rurą zasilania i powrotu. Pozwala to zapobiec zwariowaniu termicznemu rury. Po umieszczonym sondzie w odwiercie następuje wypełnienie otworu odpowiednim materiałem charakteryzującym się dobrym przewodnictwem cieplnym.

4.3.2. Wymiennik poziomy

Spotyka się wymiennik poziomy w dwóch podstawowych formach: meandrycznej oraz spiralnej.

Kolektor poziomy składa się na głębokości 20-40 cm poniżej strefy przemarzania gruntu. W Polsce możemy wyróżnić 4 strefy głębokości przemarzania gruntu. Po wykonaniu wykopu o odpowiedniej głębokości przewody rurowe prowadzi się zazwyczaj w obsypce piaskowej (konieczność stosowania podsypki zależy od rodzaju rur i gruntu). W sytuacji gdy dno wykopu zawiera skały zaleca się umieszczenie geowłókniny pod obsypką. W przypadku stosowania rur o większej odporności wykorzystywać można czystego, wyrównanego i stabilnego gruntu rodzimego, który umieszczamy na spodniej warstwie wykopu. Następnie napełniamy obsypkę piaskową. Po włożeniu rur konieczne jest przeprowadzenie próby ciśnieniowej. Po ułożeniu rur na głębokość 30 cm nad rurami wymiennika umieszczana jest taśma ostrzegawcza. Po włożeniu rur w obsypkę piaskową i wypełnieniu wykopu otrzymujemy gotowy wymiennik gruntowy.

Uruchomienie pompie ciepła powinno nastąpić po upływie co najmniej dwóch miesięcy od wykonania wymiennika. Zazwyczaj wymiennik poziomy składa się z kilku sekcji (pętli). Do ich połączenia używany jest rozdzielacz umieszczony w budynku lub w studzience zewnętrznej. Rury dobiegowe do rozdzielacza również muszą znajdować się na odpowiedniej głębokości. Należy mieć na uwadze, iż układanie rur wymiennika powinno być przeprowadzone w odpowiedniej temperaturze, gdyż od niej zależy jest promień gięcia rury.
5. PROJEKTOWANIE UKŁADÓW Z POMPAMI CIEPŁA DO C.W.U.

Najczęściej wybierane rozwiązanie to połączenie pompy ciepła do c.w.u. (Basic, Spectra, Small) z kotłem c.o. W okresie zimowym ciepłą wodę zapewnia kocioł, a w okresie letnim i przejściowym pompa ciepła. Zdarza się, że użytkownik posiada już zbiornik wody użytkowej i chce podłączyć do niego ekologiczne źródło ciepła. Wtedy konieczna jest analiza przydatności zbiornika do wykorzystania. Jeśli nie posiada zbiornika, czyli projektowany będzie nowy układ, to w zależności od zapotrzebowania na ciepłą wodę możemy wybrać standardowo podgrzewacz z pompą ciepła lub pompę ciepła większej mocy Airmax (jeśli wymagana jest duża ilość ciepłej wody lub pompa ma zapewnić c.w.u. przez cały rok, gdyż zakres pracy tych urządzeń sięga -20°C).

Podgrzewacze z pompą ciepła stosowane są głównie w budownictwie jednorodzinnym lub w budynkach publicznych, w których zapotrzebowanie na wodę nie przekracza 300 l. W przypadku wyboru podgrzewacza z pompą ciepła klient ma do wyboru dwa modele Spectra oraz Basic. Cechą wyróżniającą pompę Basic jest model 270 l z jedną lub dwiema wężownicami. Poniżej pomocny diagram.

![Diagram]

W przypadku obiektów o znacznym zapotrzebowaniu na c.w.u. np. hotel, restauracja, wspólnota mieszkaniowa, czy też jeśli pompa ciepła ma zapewniać wodę przez cały rok (w zakresie temperatur powietrza od -20°C do +30°C), zastosować należy pompę ciepła Airmax. Rozwiązanie to można zrealizować w połączeniu ze zbiornikiem MAXI lub MAXI PLUS (dwie wężownice pod dwa źródła ciepła). Dobór odpowiedniego zbiornika musi uwzględniać powierzchnię wężownicy oraz czas nagrzewu wody użytkowej. Powierzchnie wężownic (optymalna i minimalna) zostały przedstawione w tabeli poniżej. Jeśli dla danej pompy ciepła zostanie zastosowana większa wężownica to nie niesie to ze sobą negatywnych skutków. Natomiast zastosowanie mniejszej wężownicy będzie wiązało się z niepoprawną pracą urządzenia.

![Diagram]

W przypadku obiektów o znacznym zapotrzebowaniu na c.w.u. np. hotel, restauracja, wspólnota mieszkaniowa, czy też jeśli pompa ciepła ma zapewniać wodę przez cały rok (w zakresie temperatur powietrza od -20°C do +30°C), zastosować należy pompę ciepła Airmax. Rozwiązanie to można zrealizować w połączeniu ze zbiornikiem MAXI lub MAXI PLUS (dwie wężownice pod dwa źródła ciepła). Dobór odpowiedniego zbiornika musi uwzględniać powierzchnię wężownicy oraz czas nagrzewu wody użytkowej. Powierzchnie wężownic (optymalna i minimalna) zostały przedstawione w tabeli poniżej. Jeśli dla danej pompy ciepła zostanie zastosowana większa wężownica to nie niesie to ze sobą negatywnych skutków. Natomiast zastosowanie mniejszej wężownicy będzie wiązało się z niepoprawną pracą urządzenia.
Tabela 34. Powierzchnie wężownic w przypadku podłączenia pompy ciepła Airmax

<table>
<thead>
<tr>
<th>model pompy ciepła</th>
<th>minimalna powierzchnia wężownicy [m²]</th>
<th>optymalna powierzchnia wężownicy [m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airmax² 6 GT</td>
<td>1,85</td>
<td>2,47</td>
</tr>
<tr>
<td>Airmax² 9 GT</td>
<td>2,43</td>
<td>3,24</td>
</tr>
<tr>
<td>Airmax² 12 GT</td>
<td>3,30</td>
<td>4,40</td>
</tr>
<tr>
<td>Airmax² 15 GT</td>
<td>4,18</td>
<td>5,57</td>
</tr>
<tr>
<td>Airmax² 16 GT</td>
<td>4,67</td>
<td>6,22</td>
</tr>
<tr>
<td>Airmax² 21 GT</td>
<td>6,29</td>
<td>8,39</td>
</tr>
<tr>
<td>Airmax² 26 GT</td>
<td>7,80</td>
<td>10,40</td>
</tr>
<tr>
<td>Airmax² 30 GT</td>
<td>8,95</td>
<td>11,93</td>
</tr>
</tbody>
</table>

Zatem projektując dowolny układ z pompą ciepła Airmax² podłączoną do wężownicy, dobierając zbiornik, należy bezwzględnie przestrzegać zaleceń dotyczących minimalnej powierzchni wężownicy.

Poniżej przedstawiono zbiorniki produkcji Galmet dedykowane do konkretnych modeli pomp Airmax². Dobór zbiorników wynika z wymaganej minimalnej powierzchni wężownicy dla danej mocy pompy ciepła. Im większa moc pompy ciepła, tym większa wymagana powierzchnia wężownicy, a tym samym zbiornik o większej pojemności. Typoszereg MAXI to zbiorniki do pomp ciepła z jedną wężownicą. Jeśli oprócz pompy ciepła do zbiornika chcemy podłączyć źródło dodatkowe należy wybrać MAXI PLUS (zbiornik z dwoma wężownicami).

W przypadku zastosowania Airmax² tylko na cele c.w.u. zawsze istnieje możliwość doboru pompy ciepła o mniejszej mocy do większego zbiornika. Przykładowo do MAXI 500, pompa ciepła Airmax² 6 GT. Tyle, że w tym momencie trzeba wziąć pod uwagę czas nagrzewu wody, by nie był on zbyt długi, a przez to czas pracy sprężarki w ciągu roku nie przekraczał zalecanych 2000 h. Czas nagrzewu zależy od mocy pompy ciepła, a ta znowu jest zmienna, gdyż zależy od temperatury powietrza zewnętrznego. Zatem musimy wziąć pod uwagę to, przy jakiej temperaturze powietrza, jaki czas nagrzewu chcemy uzyskać.

Czas nagrzewu \(t_n \) można obliczyć ze wzoru:

\[
t_n = \frac{\rho \cdot V}{1000} \cdot \frac{c_p \cdot \Delta T}{Q_g \cdot 3600}
\]

\(t_n \) - czas nagrzewu wody [h]
\(\rho \) - gęstość wody [kg/m³]
\(V \) - pojemność zbiornika [l]
\(c_p \) - ciepło właściwe wody [kJ/(kg•K)]
\(\Delta T \) - zakres temperaturowy nagrzewu wody [K]
\(Q_g \) - moc grzewcza pompy ciepła [kW]
Przykładowo dla pomp ciepła Airmax® 6 GT chcąc odczytać moc grzewczą w temperaturze 0°C należy posłużyć się charakterystyką urządzenia (wszystkie charakterystyki zawarto w punkcie: 3.2.4). W przypadku podgrzewu c.w.u. mamy do czynienia z aplikacją wysokotemperaturową zatem zasadne jest użycie charakterystyki W55. Poniżej przykład:

\[
\begin{align*}
\frac{t_n}{t} &= \frac{1000 \cdot 500/1000 \cdot 4,189 \cdot 45}{4,3 \cdot 3600} = 6,09 \text{ h}
\end{align*}
\]

Czas ten może się nieznacznie wydłużyć ze względu na straty ze zbiornika do otoczenia. Poniżej przedstawiono charakterystyki obrazujące szacunkowe czasy nagrzewu danej objętości wody przez Airmax® 6 GT. Im niższą temperaturę powietrza zasilającego osiągamy, tym bardziej wydłuża się czas nagrzewu (wynika to ze spadku mocy grzewczej urządzenia).

Jak wcześniej wspomniano czas pracy sprężarki nie powinien przekraczać 2000h/rok. Problemem przy oszacowaniu tej wartości jest zmienna moc urządzenia, przez zmienną warunków atmosferycznych w ciągu roku. Przy określaniu szacunkowej wartości czasu pracy pompy ciepła
Airmax® na potrzeby c.w.u. można posłużyć się średnią temperaturą powietrza zewnętrznego w danej lokalizacji oraz mocą grzewczą jej odpowiadającą.

Čas pracy pompy ciepła Airmax® na potrzeby c.w.u. w ciągu roku \(t_r \) można obliczyć ze wzoru:

\[
t_r = \frac{\rho \cdot V \cdot c_p \cdot \Delta T}{Q_{et,\text{gr}} \cdot 3600} \cdot n_d
\]

\(t_r \) - czas pracy pompy ciepła w roku [h/rok]
\(\rho \) - gęstość wody [kg/m³]
\(V \) - pojemność zbiornika [l]
\(c_p \) - ciepło właściwe wody [kJ/(kg⋅K)]
\(\Delta T \) - zakres temperaturowy nagrzewu wody [K]
\(Q_{et,\text{gr}} \) - moc grzewcza pompy ciepła dla średniej rocznej temperatury powietrza [kW]
\(n_d \) - liczba dni w roku

Średnią roczną temperaturę w Polsce można przyjąć dla wstępnych obliczeń na poziomie 8°C. Dokładniejsze wartości dla poszczególnych miast zamieszczono w tabeli poniżej.

Tabela 35. Średnia roczna temperatura zewnętrzna dla poszczególnych lokalizacji

<table>
<thead>
<tr>
<th>miasto</th>
<th>średnia roczna temperatura zewnętrzna [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Białystok</td>
<td>6,7</td>
</tr>
<tr>
<td>Bielsko-Biała</td>
<td>7,8</td>
</tr>
<tr>
<td>Gdańsk</td>
<td>7,9</td>
</tr>
<tr>
<td>Jelenia Góra</td>
<td>6,9</td>
</tr>
<tr>
<td>Kalisz</td>
<td>7,9</td>
</tr>
<tr>
<td>Katowice</td>
<td>7,8</td>
</tr>
<tr>
<td>Kielce</td>
<td>7,2</td>
</tr>
<tr>
<td>Kolobrzeg</td>
<td>7,6</td>
</tr>
<tr>
<td>Kraków</td>
<td>8,0</td>
</tr>
<tr>
<td>Kłodzko</td>
<td>7,3</td>
</tr>
<tr>
<td>Legnica</td>
<td>8,4</td>
</tr>
<tr>
<td>Łódź</td>
<td>7,6</td>
</tr>
<tr>
<td>Mikołów</td>
<td>6,9</td>
</tr>
<tr>
<td>Nowy Sącz</td>
<td>7,9</td>
</tr>
<tr>
<td>Olsztyn</td>
<td>6,9</td>
</tr>
<tr>
<td>Piła</td>
<td>7,6</td>
</tr>
<tr>
<td>Przemyśl</td>
<td>7,9</td>
</tr>
<tr>
<td>Suwałki</td>
<td>6,0</td>
</tr>
<tr>
<td>Szklarska Poręba</td>
<td>6,9</td>
</tr>
<tr>
<td>Terespol</td>
<td>7,2</td>
</tr>
<tr>
<td>Warszawa</td>
<td>7,8</td>
</tr>
<tr>
<td>Wrocław</td>
<td>8,4</td>
</tr>
<tr>
<td>Zakopane</td>
<td>5,0</td>
</tr>
<tr>
<td>Zamość</td>
<td>7,2</td>
</tr>
<tr>
<td>Zgorzelec</td>
<td>6,9</td>
</tr>
<tr>
<td>Zielona Góra</td>
<td>8,2</td>
</tr>
</tbody>
</table>
Przykładowo dla pompy Airmax2 6 GT porównano roczne czasy pracy sprężarki przy założeniu zapotrzebowania 500 l oraz 1500 l na dobę. $Q_{(\text{el})}$ dla przykładowej pompy ciepła, odczytana z charakterystyki, wynosi 5,8 kW, liczbe dni w roku przyjęto 365, średnią temperaturę roczną 8°C.

Zapotrzebowanie 500 l/dobę:

$$t_n = \frac{1000 \cdot 500/1000 \cdot 4,189 \cdot 45}{5,8 \cdot 3600} = 1648 \text{ h}$$

Zapotrzebowanie 1500 l/dobę:

$$t_n = \frac{1000 \cdot 1500/1000 \cdot 4,189 \cdot 45}{5,8 \cdot 3600} = 4943 \text{ h}$$

Przy zapotrzebowaniu na poziomie 500 l/dobę szacowany czas pracy sprężarki jest odpowiedni (poniżej 2000 h/rok), natomiast przy zapotrzebowaniu 1500 l, czas ten znacznie przekracza zalecany próg. W tym wypadku należy dobrać pompę ciepła większej mocy.

6. PROJEKTOWANIE UKŁADÓW Z POMPAMI CIEPŁA DO C.O. I C.W.U.

Dla prawidłowej pracy pompy ciepła konieczne jest optymalne dobranie trzech elementów:

- Instalacji dolnego źródła (w przypadku pompy powietrznej sprawa jest uproszczona)
- Pompy ciepła (dobór rodzaju i mocy urządzenia, a także trybu jej pracy)
- Instalacji górnego źródła (instalacji ogrzewania - najkorzystniej niskotemperaturowego, zbiornika wody użytkowej, bufora wody grzewczej)

Pierwszym krokiem do doboru urządzenia do danego budynku jest określenie obciążenia cieplnego $Q_{(\text{oc})}$ czyli mocy strat generowanych z budynku. Wartość zapotrzebowania występuje w formie całkowitego zapotrzebowania wyrażonego w kW,W lub w formie jednostkowego zapotrzebowania wrażonego w W/m². Zapotrzebowanie to powinno być obliczone zgodnie z PN-EN 12831, zależnie jest od stopnia izolacyjności budynku, zastosowanych technologii budowy, a także strefy klimatycznej, w której znajduje się budynek. Dla określenia wartości zapotrzebowania uwzględnia się straty przez przegrody przezroczyste i nieprzezroczyste, dach oraz do gruntu, a także straty wentylacyjne. Jeśli chodzi o strefy klimatyczne to Polska podzielona jest na 5 stref. Dla każdej ze stref okreslona jest zewnętrzna temperatura obliczeniowa. Jest to temperatura przy jakiej określa się straty ciepła z budynku.

Rys. 49. Strefy klimatyczne Polski wg PN-EN 12831

Jeśli nie posiadamy dokładnej informacji w kwestii zapotrzebowania, można zastosować szacunkowe wartości jednostkowego zapotrzebowania przedstawione w poniższej tabeli dla budynków powstałych w różnych latach.
Tabela 36. Szacunkowe jednostkowe zapotrzebowanie budynków na ciepło na podstawie czasu budowy budynku

<table>
<thead>
<tr>
<th>jednostkowe zapotrzebowanie na ciepło [W/m²]</th>
<th>rodzaj budynku</th>
</tr>
</thead>
<tbody>
<tr>
<td>130-200</td>
<td>budynki sprzed 1980 r.</td>
</tr>
<tr>
<td>70-130</td>
<td>budynki sprzed 1990 r.</td>
</tr>
<tr>
<td>60-100</td>
<td>budynki sprzed 2000 r.</td>
</tr>
<tr>
<td>40-60</td>
<td>budynki sprzed 2005 r.</td>
</tr>
<tr>
<td>10-50</td>
<td>nowe budynki</td>
</tr>
</tbody>
</table>

* Standard domu pasywnego

iloczyn jednostkowego zapotrzebowania na ciepło i powierzchni ogrzewanej pozwoli obliczyć ($Q_{budynku}$):

$$Q_{budynku} = q \cdot A$$

q - jednostkowe zapotrzebowanie na ciepło [W/m²]
A - powierzchnia ogrzewana budynku [m²]

Inną możliwością przybliżenia wartości zapotrzebowania cieplnego jest oszacowanie na podstawie typu domu.

Tabela 37. Szacunkowe jednostkowe zapotrzebowanie budynków na ciepło na podstawie typu budynku

<table>
<thead>
<tr>
<th>jednostkowe zapotrzebowanie na ciepło [W/m²]</th>
<th>rodzaj budynku</th>
<th>zastosowane standardy</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-200</td>
<td>budynek niemodernizowany</td>
<td>brak izolacji cieplnej, podwójne szyby, wentylacja grawitacyjna</td>
</tr>
<tr>
<td>60-80</td>
<td>budynek po modernizacji</td>
<td>izolacja cieplna, podwójne szyby, wentylacja grawitacyjna</td>
</tr>
<tr>
<td>40-50</td>
<td>nowe budynek</td>
<td>izolacja cieplna, szyby izolowane cieplnie, wentylacja grawitacyjna</td>
</tr>
<tr>
<td>25-40</td>
<td>budynek niskoenergetyczne</td>
<td>izolacja cieplna, szyby izolowane cieplnie, rekuperacja</td>
</tr>
<tr>
<td>10-15</td>
<td>budynek pasywny</td>
<td>izolacja cieplna, szyby potrójne izolowane cieplnie, rekuperacja</td>
</tr>
</tbody>
</table>

Przykładowo zapotrzebowanie ciepłej wody dla nowo budowanego domu jednorodzinnego o powierzchni 150 m², przyjmując na podstawie powyższych tablic jednostkowe zapotrzebowanie 50 W/m², otrzymamy:

$$Q_{budynku} = 50 \cdot 150 = 7500 = 7,5 kW$$

Kolejnym etapem jest wyznaczenie zapotrzebowania na ciepłą wodę, a następnie dodatku mocy na ciepłą wodę użytkową (Q_{cwu}). Standardowo na jedną osobę przyjmuje się wartość zapotrzebowania 50 l/dobę, jednak jest to zależne od indywidualnych wymagań mieszkańców. Dodatek ten można przyjmować na poziomie 0,25 kW na osobę.

$$Q_{cwu} = 0,25 kW \cdot n$$

n - liczba osób korzystających z wody użytkowej

Przykładowo przy 4 mieszkańcach domu:

$$0,25 kW \cdot 4 = 1 kW$$

Sumując zapotrzebowanie budynek na ciepło oraz dodatek na ciepłą wodę użytkową, otrzymujemy całkowitą wymaganą szczytową moc grzewczą urządzenia (Q).

$$Q = Q_{budynku} + Q_{cwu}$$

$Q_{budynku}$ - wymagana moc grzewcza na potrzeby c.o.
Q_{cwu} - dodatek mocy na c.w.u.

W przypadku gdy dystrybutor energii elektrycznej blokuje czasowo prace pomp ciepła należy to dodatkowo uwzględnić przez kolejny dodatek mocy, lecz taki problem zwykle nie ma miejsca. Podsumowując określanie zapotrzebowania na moc grzewczą:

zapotrzebowanie cieplne budynku
• szacunkowa wartość
• dokładna wartość zgodnie z PN-EN 12831
dodatek mocy na c.w.u
• 0,25 kW na osobę
sumaryczna wymagana moc grzewcza
• opcjonalnie należy uwzględnić czas blokady pomp ciepła

Produujemy w Polsce
6.1. Tryby pracy pomp ciepła, punkt biwalencyjny

Przy projektowaniu układu z pompą ciepła konieczne jest określenie trybu jej pracy.

Tryb monowalentny: Pompa ciepła zapewnia 100% zapotrzebowania budynku na ciepło. Całkowite obciążenie grzewcze jest pokrywane tylko przez pompę ciepła. Jest ona jedynym źródłem ogrzewania.

Do zaprezentowania kolejnych trybów konieczne jest zapoznanie się z pojęciem punktu biwalencyjnego. Jeśli moc pompy ciepła jest w pewnym zakresie temperatur niższa od wymaganej mocy grzewczej to na przecięciu krzywych uzyskujemy punkt biwalencyjny.

Wykres 55. Tryb monowalentny

Wykres 56. Przykładowy punkt biwalencyjny

Poniżej punktu biwalencyjnego pompa ciepła musi być wspomagana dodatkowym źródłem. Jeśli będzie to grzałka elektryczna, to będziemy mieli do czynienia z trybem monoenergetycznym - oba źródła są uzależnione od prądu. Jeśli źródło wspomagające będzie niezależne od zasilania elektrycznego, to będzie miał miejsce tryb biwalentny. Przykładem takiego źródła jest kocioł c.o. Zatem przechodząc do dalszego opisu możliwych trybów pracy pomp ciepła, wyróżniamy:
Tryb monoenergetyczny równoległy: Pompa ciepła jest wspomagana źródłem ciepła zasilanym energią elektryczną, czyli grzałką. Tryb równoległy charakteryzuje się tym, że poniżej punktu biwalencyjnego pompa ciepła pracuje równolegle z grzałką, zatem uzupełnia jedynie niedobór mocy pompy ciepła.

Powyżej temperatury biwalencyjnej pompa ciepła ma moc wystarczającą do pokrycia zapotrzebowania na ciepło. Natomiast poniżej punktu biwalencyjnego pompa ciepła zaczyna pracować jako samodzielna. Moc pompy ciepła dobiera się tak, by punkt biwalencyjny dla danego budynku wypadł około -10°C.

Tryb biwalenty równowagowy: Pompa ciepła jest wspomagana źródłem ciepła zasilanym inną energią (gazem, węglem, olejem itp.), czyli np. kotłem gazowym.

Tryb biwalentny alternatywny: Pompa ciepła poniżej temperatury biwalencyjnej zostaje zastąpiona źródłem ciepła zasilanym inną energią (gazem, węglem, olejem itp.), czyli np. kotłem gazowym.

Tryb biwalentny jak wcześniej zaznaczono aplikuje się zazwyczaj przy modernizacjach kotłowni. Powyżej punktu biwalencyjnego pracuje jedynie pompę ciepła, to będzie ona pracowała właśnie w trybie biwalentnym.

Tryb biwalentny równoległy jest wystarczający do pokrycia potrzeb budynku, pracuje sama pompa ciepła. Natomiast gdy jej moc osiąga zbyt niskie wartości, kocioł zdecydujemy się na pompę ciepła, to będzie ona pracowała właśnie w trybie biwalentnym.

Tryb biwalentny równoległy jest wystarczający do pokrycia potrzeb budynku, pracuje sama pompa ciepła. Natomiast gdy jej moc osiąga zbyt niskie wartości, kocioł zdecydujemy się na pompę ciepła, to będzie ona pracowała właśnie w trybie biwalentnym.
6.2. Projektowanie układów z powietrzną pompą ciepła do c.o. i c.w.u. - Airmax²

6.2.1. Wyznaczanie temperatury biwalencyjnej

Pompy ciepła w systemie powietrze-woda zazwyczaj pracują w trybie monoenergetycznym, zatem dopuszcza się wspomaganie ich grzałką elektryczną. Jednak możliwy jest także dobór, tak by pompa pracowała w trybie monowalentnym, mimo to zaleca się wybór trybu monoenergetycznego z temperaturą biwalencyjną wynoszącą około -10°C (generuje to niższe koszty inwestycyjne, a czasem także eksploatacyjne). Do wyznaczenia temperatury biwalencyjnej należy posłużyć się charakterystyką pompy ciepła oraz budynku. Jeśli chodzi o tą pierwszą to dla aplikacji wysokotemperaturowych należy wybrać charakterystykę W55, dla niskotemperaturowych W35. Charakterystykę budynku, to znaczy zależność zapotrzebowania na moc od temperatury zewnętrznej można wykreślić w następujący sposób:

- Punkt A to wartość maksymalnego zapotrzebowania na ciepło w obliczeniowej temperaturze zewnętrznej (Q)
- Punkt B to wartość wymaganej mocy przy granicznej temperaturze ogrzewania.

Punkt przecięcia się tych charakterystyk to właśnie punkt biwalencyjny. Zakreskowany obszar na poniższym wykresie to ilość mocy grzewczej, która musi być uzupełniona przez grzałkę lub inne dodatkowe źródło. Wynika to z faktu, iż poniżej temperatury biwalencyjnej wymagana moc grzewcza jest wyższa od dyspozycyjnej mocy pompy ciepła.

![Wykres 61. Wyznaczanie punktu biwalencyjnego](image)

<table>
<thead>
<tr>
<th>typ budynku</th>
<th>temperatura graniczna [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>niemodernizowany</td>
<td>18</td>
</tr>
<tr>
<td>termomodernizowany</td>
<td>15</td>
</tr>
<tr>
<td>nowy budynek</td>
<td>15</td>
</tr>
<tr>
<td>niskoenergetyczny</td>
<td>12</td>
</tr>
<tr>
<td>pasywny</td>
<td>10</td>
</tr>
</tbody>
</table>

Na powyższym przykładowym wykresie przyjęto tę temperaturę na poziomie 15°C jak dla nowych i termomodernizowanych budynków. Jeśli pompa ciepła zapewnia też ciepłą wodę to moc grzewcza budynku w temperaturze granicznej, i każdej wyższej, będzie równa dodatkowi mocy na c.w.u. Taka sytuacja wystąpi na poniższej przykładowej charakterystyce.

6.2.2. Przykład zastosowania Airmax² 15 GT w różnych budynkach

Poniżej przeanalizowano pracę pompy ciepła Airmax² 15 GT na potrzeby ogrzewania budynków o różnych powierzchniach (tym samym różnym projektowym obciążeniem cieplnym). Założono takie same jednostkowe zapotrzebowanie na ciepło dla wszystkich budynków - 50 W/m². Przyjęto ogrzewanie podłogowe, stąd też wykorzystywana jest charakterystyka pompy ciepła przy parametrze W35. Uwzględniono również w każdym przypadku dodatek mocy na c.w.u. ~ 1 kW (200 L/dobę, 4 osoby). W ten sposób wykreślono cztery charakterystyki budynków:

- 440 m², Qbudynku = 22 kW, Qcwu = 1 kW, Q = 23 kW
- 280 m², Qbudynku = 14 kW, Qcwu = 1 kW, Q = 15 kW
- 160 m², Qbudynku = 8 kW, Qcwu = 1 kW, Q = 9 kW
- 120 m², Qbudynku = 6 kW, Qcwu = 1 kW, Q = 7 kW

Obliczeniową temperaturę zewnętrzną przyjęto dla III strefy klimatycznej: -20°C. Temperatura graniczna dla nowego budownictwa, 15°C.
Wykres 62. Zastosowanie pompy ciepła Airmax² 15 GT w czterech różnych obiektach z ogrzewaniem podłogowym oraz zapotrzebowaniem 200 l/dobę

Dla budynku o najmniejszej powierzchni ogrzewanej (120 m²) pompa ciepła Airmax² 15 GT pracowałaby w trybie monowalentnym, czyli pompa zapewnia 100% zapotrzebowania budynku na ciepło.

- **120 m² - tryb monowalentny, pompa nie wymaga wspomagania**

Tryb ten, tak jak już wspominano, zwykle nie jest stosowany w instalacjach z pompą powietrzną. Duża moc pompy ciepła, niesie za sobą większe koszty inwestycyjne, a także wiąże się z koniecznością doboru zasobnika c.w.u. wyposażonego w wężownicę o odpowiednio dużej powierzchni.

Dla kolejnych budynków otrzymano już punkty biwalencyjne, czyli pompa w tych budynkach pracowałaby w trybie monoenergetycznym lub biwalentnym:

- **160 m² - punkt biwalencyjny wypada na -12°C, zakreskowany na zielono obszar (praca źródła wspomagającego) jest niewielki**
- **280 m² - punkt biwalencyjny wypada na -4°C, a zakreskowany na żółto obszar (praca źródła wspomagającego) znacznie się zwiększa**
- **440 m² - punkt biwalencyjny wypada na 0°C. Dodatkowe źródło będzie musiało zapewnić znaczną część energii. Grzałka 7 kW zabudowana w pompie ciepła będzie niewystarczająca, zatem pompa musiałaby pracować w trybie biwalentnym. Wybierając tryb biwalentny alternatywny, kocioł należy dobrać na szczytową moc tj. 23 kW. Jeżeli natomiast tryb biwalentny równoległy, to moc kotła powinna uzupełniać niedobór mocy pompę ciepła (różnica pomiędzy szczytowym zapotrzebowaniem, a mocą pompy w temperaturze obliczeniowej), co w przytocznym przykładzie wyniesie 16 kW (patrz Wykres 62).**

Podsumowując, w przytocznym przykładzie pompa ciepła Airmax² 15 GT do pracy w trybie monoenergetycznym powinna być dobrana dla budynku 160 m², gdyż właśnie w jego przypadku osiągamy temperaturę biwalencyjną najbliżej zalecanej -10°C.

Wykres 63. Wyznaczenie mocy źródła dodatkowego w trybie biwalentnym równoległym
6.2.3. Analiza doboru pomp ciepła Airmax² do przykładowego obiektu

W kolejnej analizie posłużono się jednym budynkiem, do którego „przymierzono” cztery modele pompy ciepła. Budynek o powierzchni ogrzewanej 160 m², standardowym zapotrzebowaniu 50 W/m² (Q_{budynku} = 8 kW), w którym zużycie c.w.u. wynosi 200 l/dobę, Q_{cwu} = 1 kW, Q = 9 kW.

Uzyskano następującepunkty biwalencyjne:
- Airmax² 6 GT: -1°C
- Airmax² 9 GT: -4°C
- Airmax² 12 GT: -9°C
- Airmax² 15 GT: -13°C

W przykładowym budynku każda pompa ciepła Airmax² może pracować w trybie monoenergetycznym, gdyż niedobór mocy nawet dla najmniejszej pompy jest mniejszy, niż moc zabudowanej w pompie grzałki. Wymagana minimalna moc grzałki to różnica między maksymalnym zapotrzebowaniem budynku na ciepło, a mocą grzewczą pompy ciepła w temperaturze obliczeniowej. Odnosząc się do powyższego przykładu różnicę tę przykładowo dla Airmax² 6 GT zaznaczono na poniższym wykresie:

Wymagana moc minimalna grzałki dla Airmax² 6 GT wynosi, zgodnie z powyższym wykresem, 6 kW. W modelu tym zabudowana jest grzałka 7 kW, zatem pompa przy współpracy z grzałką byłaby w stanie wygrzać ten budynek. Jednakże praca jednostek 6 i 9 GT wiązałaby się z bardzo dużym udziałem energii elektrycznej dostarczonej przez grzałkę. Zaleca się zatem wybór modeli 12-15 GT (gdyż w tych przypadkach temperatura biwalencyjna jest zbliżona do sugerowanych -10°C).

Podsumowując, każdą pompę ciepła można dobrać do dowolnego budynku, lecz istotne jest to jakie założenia ma spełniać, to znaczy w jakim trybie ma pracować oraz jaką temperaturę punktu biwalencyjnego preferujemy.
6.2.4. Airmax² - wymagania instalacyjne

- Wymagane napięcie 3-fazowe, 400 V
- Konieczne jest zapewnienie odpływu kondensatu, który wytwarza się naturalnie podczas pracy pompy, a także podczas odszraniania. Można zastosować podłoże żwirowe.
- Wybór miejsca montażu powinien uwzględniać emisję hałasu urządzenia.
- Pompa instalowana jest na zewnątrz budynku zatem obecność wody grzewczej po stronie zewnętrznej grozi zamarznięciem, a co za tym idzie uszkodzeniem instalacji lub urządzenia. Z tego powodu zalecane jest stosowanie glikolu w instalacji grzewczej lub wymiennika pośredniczącego glikol/woda. Zastosowanie wymiennika pozwala na napełnienie instalacji grzewczej wodą. Po stronie zewnętrznej glikol zabezpiecza instalację przed zamarznięciem. Zaleca się stosowanie glikolu o temperaturze krzepnięcia -30°C.

![Rys. 50. Zastosowanie wymiennika pośredniczącego glikol/woda](image)

Tabela 39. Dedykowane wymienniki płytowe glikol/woda do instalacji z pompą ciepła Airmax²

<table>
<thead>
<tr>
<th>model pompy ciepła</th>
<th>dedykowany wymiennik płotywy</th>
<th>nr katalogowy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airmax² 6-9 GT</td>
<td>SWEP 40</td>
<td>09-000102</td>
</tr>
<tr>
<td>Airmax² 12-16 GT</td>
<td>SWEP 60</td>
<td>09-000103</td>
</tr>
<tr>
<td>Airmax² 21 GT</td>
<td>SWEP 70</td>
<td>09-000104</td>
</tr>
<tr>
<td>Airmax² 26-30 GT</td>
<td>SWEP 100</td>
<td>09-000105</td>
</tr>
</tbody>
</table>

Podłączenie pompy ciepła do wymiennika o zbyt małej powierzchni wymiany ciepła będzie skutkowało błędem wysokiego ciśnienia w pompie.

- Montaż urządzenia powinien odbywać się z zachowaniem odpowiednich odległości od otaczających ją elementów. Odległość minimalna od ściany wynosi w zależności od modeli 40 lub 100 cm. Powietrze wyrzucone jest z urządzenia w kierunku przednim, zatem zaleca się zachowanie odpowiedniej odległości od czoła urządzenia. Jeśli chodzi o optymalne umieszczenie urządzenia względem kierunków świata to zależne jest to od funkcji pompy ciepła. W przypadku pracy urządzenia na potrzeby c.w. zaleca się montaż na stronie północnej, by w okresie wysokich temperatur pompa nie wykraczała poza obszar pracy. Jeżeli realizowane jest tylko ogrzewanie budynku to montaż zaleca się przeprowadzić na stronie południowej. Oczywiście chodzi tu o osiąganie jak najbardziej korzystnych temperatur powietrza, mając również na uwadze ryzyko zbyt wysokich temperatur w okresie letnim. Problem można zniwelować stosując zacienienie, zadaszenie.

![Rys. 51. Wymagane odległości montażowe Airmax² 6-15 GT (widok z góry)](image)

![Rys. 52. Wymagane odległości montażowe Airmax² 16-30 GT (widok z góry)](image)

- Do realizacji ciepłej wody użytkowej należy pompę ciepła podłączyć do zasobnika MAXI lub MAXI PLUS. Są to zbiorniki z powiększoną powierzchnią węzownicy pod pompę ciepła. Realizacja ciepłej wody następuje przez zawór przełączający trójdrogowy. Możliwe jest także użycie zbiornika kombinowanego (Kumulo) lub higienicznego zbiornika warstwowego (MULTI-INOX).
Glikol propylenowy 51% (−35°C)

Rys. 53. Zawór trójdrogowy przełączający

Zasilanie instalacji grzewczej 1'', GZ

Powrót z instalacji grzewczej 1'', GZ

Rys. 54. Schemat przyłączy hydraulicznych pompy ciepła Airmax™ 6-15 GT

Zasilanie instalacji grzewczej 1'' (16GT); 5/4'' (21-30GT); GZ

Powrót z instalacji grzewczej 1'' (16GT); 5/4'' (21-30GT); GZ

Rys. 55. Schemat przyłączy hydraulicznych pompy ciepła Airmax™ 16-30 GT
Tabela 40. Dedykowany zawór trójdrogowy z siłownikiem dla pomp ciepła Airmax²

<table>
<thead>
<tr>
<th>Model pompy ciepła</th>
<th>Specyfikacja</th>
<th>Numer katalogowy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airmax² 6-16 GT</td>
<td>AZV 643 G1" GZ, Kvs 8 m³/h</td>
<td>M-006896</td>
</tr>
<tr>
<td>Airmax² 21-30 GT</td>
<td>VBI 60-40-25L G6/4" GW, Kvs 25 m³/h GLB341.9E</td>
<td>09-002010</td>
</tr>
</tbody>
</table>

Przyłącze rurowe zaleca się wykonać z rury miedzianej o odpowiedniej średnicy wewnętrznej, należy pamiętać o izolacji cieplnej.

Tabela 41. Wewnętrzna średnica rury przyłącza pomp ciepła Airmax²

<table>
<thead>
<tr>
<th>Model pompy ciepła</th>
<th>Przyłącze - średnica wewnętrzna rury [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airmax² 6 GT</td>
<td>Ø 20</td>
</tr>
<tr>
<td>Airmax² 9-16 GT</td>
<td>Ø 26</td>
</tr>
<tr>
<td>Airmax² 21-30 GT</td>
<td>Ø 32</td>
</tr>
</tbody>
</table>

6.2.5. Airmax² - dobór zasobnika c.w.u. (MAXI, MAXI PLUS)

Do realizacji ciepłej wody użytkowej do pomp ciepła należy dobrać zbiornik z powiększoną powierzchnią wężownicy, który jest przeznaczony do pracy z pompą ciepła. Dla poprawnej pracy pompy ciepła w trybie realizacji c.w.u. konieczne jest zapewnienie odpowiedniej **powierzchni wężownicy** \(A_w \). Dla optymalnego doboru przyjmuje się, że na 1 kW mocy nominalnej pompę ciepła wymagane jest 0,4 m² powierzchni wężownicy. Minimalną granicę jest 0,3 m².

\[
A_w = Q_{n} \cdot p_w
\]

\(Q_{n} \) - moc nominalna pompę ciepła w punkcie pracy A7W35 [kW]

\(p_w \) - optymalnie współczynnik ten wynosi 0,4, minimalnie 0,3 [m²/kW]

Przykładowo dla pomp ciepła Airmax² 9 GT nominalna moc grzewcza wynosi 8,11 kW, obliczając zgodnie z powyższym wzorem wymaganą powierzchnię wężownicy:

\[
A_w = 8,11 \cdot (0,3÷0,4) = 2,43 ÷ 3,24 m^2
\]

Zatem możliwy jest dobór zasobnika MAXI 250 o powierzchni wężownicy 3 m² lub MAXI 300 o powierzchni wężownicy 3,8 m². W przypadku doboru zbiornika z dwoma wężownicami można zastosować MAXI PLUS 400 o wężownicy pod pompę ciepła o powierzchni 3,8 m². Poniżej zamieszczono tabelę z dedykowanymi zasobnikami c.w.u. dla modeli pomp ciepła z serii Airmax².

Tabela 42. Proponowane zbiorniki MAXI i MAXI PLUS dla pomp ciepła Airmax²

<table>
<thead>
<tr>
<th>model pompy ciepła</th>
<th>powierzchnia wężownicy [m²]</th>
<th>proponowany zasobnik MAXI</th>
<th>powierzchnia wężownicy w zbiorniku MAXI [m²]</th>
<th>proponowany zasobnik MAXI PLUS</th>
<th>powierzchnia wężownicy pod pompę ciepła w zbiorniku MAXI PLUS [m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airmax² 6 GT</td>
<td>2,47</td>
<td>MAXI 250</td>
<td>3,0</td>
<td>MAXI PLUS 300</td>
<td>2,2</td>
</tr>
<tr>
<td>Airmax² 9 GT</td>
<td>3,24</td>
<td>MAXI 250</td>
<td>3,0</td>
<td>MAXI PLUS 400</td>
<td>3,8</td>
</tr>
<tr>
<td>Airmax² 12 GT</td>
<td>4,40</td>
<td>MAXI 300</td>
<td>3,8</td>
<td>MAXI PLUS 400</td>
<td>3,8</td>
</tr>
<tr>
<td>Airmax² 15 GT</td>
<td>5,57</td>
<td>MAXI 400</td>
<td>5,0</td>
<td>MAXI PLUS 500</td>
<td>4,8</td>
</tr>
<tr>
<td>Airmax² 16 GT</td>
<td>6,22</td>
<td>MAXI 500</td>
<td>6,0</td>
<td>MAXI PLUS 500</td>
<td>4,8</td>
</tr>
<tr>
<td>Airmax² 21 GT</td>
<td>8,39</td>
<td>MAXI 700</td>
<td>6,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airmax² 26 GT</td>
<td>10,40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airmax² 30 GT</td>
<td>11,93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jak już wspomniano w rozdziale 5-tym opracowania istnieje możliwość doboru zbiornika o większej pojemności i tym samym większej wężownicy, lecz trzeba brać pod uwagę czas nagnięcia i czas pracy urządzenia w ciągu roku. Natomiast podłączenie pomp ciepła do wężownicy o zbyt małej powierzchni będzie skutkowało błędem wysokiego ciśnienia w pompie. Błąd ten wystąpić może szczególnie w okresie wysokich temperatur zewnętrznych, tzn. pracy w trybie letnim na potrzeby wody użytkowej.
6.2.6. Airmax² - dobór bufora wody grzewczej SG(B)

Jeśli chodzi o pojemność bufora do instalacji, to zależy ona od przyjętych założeń. Jeśli bufor ma być standardowym elementem stabilizującym przyjmuje się pojemność 30 l/kW mocy nominalnej pomp ciepła. Jeżeli natomiast przewiduje się pracę pomp ciepła w systemie dwutaryfowym energii elektrycznej, wtedy bufor ma pełnić funkcję akumulatora, a jego pojemność przyjmuje się 60 l/kW mocy nominalnej pomp ciepła. Zatem pojemność bufora \(V_b \) można obliczyć ze wzoru:

\[
V_b = Q_n \cdot v
\]

\(Q_n \) - moc nominalna pompy ciepła w punkcie pracy A7W35 [kW]

\(v \) - zalecany standardowo współczynnik: 30 l/kW (w przypadku pracy w systemie dwutaryfowym 60 l/kW)

Poniżej zamieszczono tabelę z proponowanymi modelami buforów:

<table>
<thead>
<tr>
<th>model pompy ciepła</th>
<th>sugerowana pojemność bufora [l]</th>
<th>proponowane bufory</th>
<th>rzeczywista pojemność proponowanego bufora [l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airmax² 6 GT</td>
<td>185</td>
<td>SG(B) 200</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG(B) 300</td>
<td>305</td>
</tr>
<tr>
<td>Airmax² 9 GT</td>
<td>243</td>
<td>SG(B) 200</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG(B) 300</td>
<td>305</td>
</tr>
<tr>
<td>Airmax² 12 GT</td>
<td>330</td>
<td>SG(B) 300</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG(B) 400</td>
<td>396</td>
</tr>
<tr>
<td>Airmax² 15 GT</td>
<td>418</td>
<td>SG(B) 400</td>
<td>396</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG(B) 500</td>
<td>467</td>
</tr>
<tr>
<td>Airmax² 16 GT</td>
<td>467</td>
<td>SG(B) 500</td>
<td>467</td>
</tr>
<tr>
<td>Airmax² 21 GT</td>
<td>629</td>
<td>SG(B) 800</td>
<td>728</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG(B) 1000</td>
<td>883</td>
</tr>
<tr>
<td>Airmax² 26 GT</td>
<td>780</td>
<td>SG(B) 800</td>
<td>728</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG(B) 1000</td>
<td>883</td>
</tr>
<tr>
<td>Airmax² 30 GT</td>
<td>895</td>
<td>SG(B) 1000</td>
<td>883</td>
</tr>
</tbody>
</table>
Jeżeli do bufora podłączony ma być kocioł lub kominek jako dodatkowe źródło to można wykorzystać model bufora z wężownicą. Tradycyjny układ z pompą ciepła Airmax², zbiornikiem buforowym, zasobnikiem c.w.u. MAXI oraz pośredniczącym wymiennikiem płyтовym przedstawiono poniżej:

Rys. 56. Schemat układu z pompą ciepła, zbiornikiem buforowym, zasobnikiem MAXI, wymiennikiem płyтовym

6.2.7. Airmax² - dobór zbiornika kombinowanego SG(K)

Zbiornik kombinowany stosowany jest do połączenia większej ilości źródeł, przykładowo pompę ciepła, kotła i kolektorów słonecznych. Konstrukcyjnie zbiornik ten łączy bufor z zasobnikiem c.w.u. Stosowany może być również w instalacjach, w których dobrana moc pompy ciepła jest duża w stosunku do zapotrzebowania na ciepłą wodę użytkową. Dobór pojemności buforowej jest analogiczny do przedstawionego powyżej schematu doboru pojemności bufora.

Tabela 44. Proponowane zbiorniki kombinowane (zbiornik w zbiorniku) dla Airmax² - przy założeniu 30 l/kW mocy nominalnej

<table>
<thead>
<tr>
<th>model pompy ciepła</th>
<th>sugerowana pojemność buforowa [l]</th>
<th>proponowane zbiorniki kombinowane</th>
<th>rzeczywista pojemność buforowa [l]</th>
<th>rzeczywista pojemność zasobnika c.w.u. [l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airmax² 6 GT</td>
<td>185</td>
<td>SG(K) 300/80</td>
<td>220</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG(K) 380/120</td>
<td>260</td>
<td>120</td>
</tr>
<tr>
<td>Airmax² 9 GT</td>
<td>243</td>
<td>SG(K) 380/120</td>
<td>260</td>
<td>120</td>
</tr>
<tr>
<td>Airmax² 12 GT</td>
<td>330</td>
<td>SG(K) 500/160</td>
<td>340</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG(K) 600/200</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>Airmax² 15 GT</td>
<td>418</td>
<td>SG(K) 600/200</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG(K) 800/200</td>
<td>600</td>
<td>200</td>
</tr>
<tr>
<td>Airmax² 16 GT</td>
<td>467</td>
<td>SG(K) 600/200</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG(K) 800/200</td>
<td>600</td>
<td>200</td>
</tr>
<tr>
<td>Airmax² 21 GT</td>
<td>629</td>
<td>SG(K) 800/200</td>
<td>600</td>
<td>200</td>
</tr>
<tr>
<td>Airmax² 26 GT</td>
<td>780</td>
<td>SG(K) 1000/200</td>
<td>800</td>
<td>200</td>
</tr>
<tr>
<td>Airmax² 30 GT</td>
<td>895</td>
<td>SG(K) 1000/200</td>
<td>800</td>
<td>200</td>
</tr>
</tbody>
</table>
6.2.8. Airmax² - wstępny szacunkowy dobór systemu z powietrzną pompą ciepła dla standardowego budynku

Poniżej przedstawiono pomocne diagramy pozwalające na wstępny dobór rozwiązania dla standardowego domu jednorodzinnego (o zapotrzebowaniu 50 W/m² i zużyciu ciepłej wody użytkowej 200 l/dobę).

W przypadku wyboru ogrzewania niskotemperaturowego (podłogowe, ścienne) pompa ciepła Airmax² (6-15 GT), przy określonych wyżej założeniach, przeznaczona jest do domów o powierzchni ogrzewanej do około 210 m². Diagram doborowy dla ogrzewania niskotemperaturowego poniżej:

<table>
<thead>
<tr>
<th>Powierzchnia ogrzewana (m²)</th>
<th>Ogrzewanie niskotemperaturowe</th>
<th>Pompa ciepła</th>
<th>Strumień ciepła</th>
<th>Strumień ciepła</th>
<th>Strumień ciepła</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 80 m²</td>
<td>< 80 m²</td>
<td>Airmax² 6 GT</td>
<td>MAXI 250</td>
<td>SG(B) 200</td>
<td>SG(B) 200</td>
</tr>
<tr>
<td>90-110 m²</td>
<td>90-110 m²</td>
<td>Airmax² 9 GT</td>
<td>MAXI 250</td>
<td>SG(B) 300</td>
<td>SG(B) 300</td>
</tr>
<tr>
<td>120-160 m²</td>
<td>120-160 m²</td>
<td>Airmax² 12 GT</td>
<td>MAXI 300</td>
<td>SG(B) 400</td>
<td>SG(B) 400</td>
</tr>
<tr>
<td>170-210 m²</td>
<td>170-210 m²</td>
<td>Airmax² 15 GT</td>
<td>MAXI 400</td>
<td>SG(B) 500</td>
<td>SG(B) 500</td>
</tr>
</tbody>
</table>

Typoszereg pomp Airmax² 16-30GT, przy tych samych założeniach pozwala na ogrzewanie obiektów do 400 m²:

<table>
<thead>
<tr>
<th>Powierzchnia ogrzewana (m²)</th>
<th>Ogrzewanie niskotemperaturowe</th>
<th>Pompa ciepła</th>
<th>Strumień ciepła</th>
<th>Strumień ciepła</th>
<th>Strumień ciepła</th>
</tr>
</thead>
<tbody>
<tr>
<td>210-220 m²</td>
<td>210-220 m²</td>
<td>Airmax² 16 GT</td>
<td>MAXI 500</td>
<td>SG(B) 500</td>
<td>SG(B) 500</td>
</tr>
<tr>
<td>230-270 m²</td>
<td>230-270 m²</td>
<td>Airmax² 21 GT</td>
<td>+ SG(B) 800</td>
<td>+ SG(B) 800</td>
<td>+ SG(B) 800</td>
</tr>
<tr>
<td>280-350 m²</td>
<td>280-350 m²</td>
<td>Airmax² 26 GT</td>
<td>+ SG(B) 800</td>
<td>+ SG(B) 800</td>
<td>+ SG(B) 800</td>
</tr>
<tr>
<td>360-400 m²</td>
<td>360-400 m²</td>
<td>Airmax² 30 GT</td>
<td>+ SG(B) 1000</td>
<td>+ SG(B) 1000</td>
<td>+ SG(B) 1000</td>
</tr>
</tbody>
</table>

W przypadku wyboru ogrzewania wysokotemperaturowego (grzejnikowe) pompa ciepła Airmax² 6-15 GT, przy określonych wyżej założeniach, przeznaczona jest do domów o powierzchni ogrzewanej do maksymalnie 200 m². Diagram doborowy dla ogrzewania wysokotemperaturowego poniżej:

<table>
<thead>
<tr>
<th>Powierzchnia ogrzewana (m²)</th>
<th>Ogrzewanie wysokotemperaturowe</th>
<th>Pompa ciepła</th>
<th>Strumień ciepła</th>
<th>Strumień ciepła</th>
<th>Strumień ciepła</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 70 m²</td>
<td>< 70 m²</td>
<td>Airmax² 6 GT</td>
<td>MAXI 250</td>
<td>SG(B) 200</td>
<td>SG(B) 200</td>
</tr>
<tr>
<td>80-110 m²</td>
<td>80-110 m²</td>
<td>Airmax² 9 GT</td>
<td>MAXI 250</td>
<td>SG(B) 300</td>
<td>SG(B) 300</td>
</tr>
<tr>
<td>120-150 m²</td>
<td>120-150 m²</td>
<td>Airmax² 12 GT</td>
<td>MAXI 300</td>
<td>SG(B) 400</td>
<td>SG(B) 400</td>
</tr>
<tr>
<td>160-200 m²</td>
<td>160-200 m²</td>
<td>Airmax² 15 GT</td>
<td>MAXI 400</td>
<td>SG(B) 500</td>
<td>SG(B) 500</td>
</tr>
</tbody>
</table>

Typoszereg pomp Airmax² 16-30 GT, przy tych samych założeniach w przypadku ogrzewania wysokotemperaturowego pozwala na ogrzewanie obiektów nawet do 410 m²:
6.3. Projektowanie układów z gruntową pompą ciepła do c.o. i c.w.u. - Maxima

6.3.1. Analiza doboru pomp ciepła Maxima do przykładowego obiektu

W analizie posłużono się budynkiem o powierzchni 210 m², dla którego całkowita wymagana moc grzewcza wynosi: \(Q = 11.5 \text{ kW} \). Budynek jest o standardowym zapotrzebowaniu 50 W/m² (\(Q_{\text{budynku}} = 10.5 \text{ kW} \)), zużycie c.w.u. wynosi 200 l/dobę (\(Q_{\text{c.w.u.}} = 1 \text{ kW} \)). Charakterystykę budynku oraz wszystkich modeli typoszeregu Maxima przedstawiono poniżej.

![Wykres 66. Dobór pompy ciepła Maxima w przykładowym obiekcie, o zapotrzebowaniu na ciepło 10,5 kW i dodatku na c.w.u. 1 kW](image_url)

W przypadku pomp gruntowych dobór jest prostszy, niż dla pomp powietrznych. Dobiera się urządzenie tak, by pracowało w trybie monowalentnym. Oznacza to wybór modelu o mocy wyższej niż wymagana moc źródła ciepła dla budynku. W powyższym przykładzie będzie to skutkowało wyborem modelu Maxima 12 GT.
6.3.2. Maxima - wymagania instalacyjne

- Wymagane napięcie 3-fazowe, 400V
- Urządzenie przeznaczone jest do montażu wewnątrz pomieszczeń. **Minimalną kubaturę pomieszczenia (V)** zgodnie z EN 378 wylicza się w następujący sposób:

\[
V = N + PL
\]

N – napełnienie pompy ciepła czynnikiem chłodniczym [kg]
PL – praktyczna granica stężenia [kg/m³] (dla czynnika chłodniczego R410A wynosi ona 0,44kg/m³)

Poniżej przedstawiono tabelę z minimalnymi wartościami kubatur pomieszczenia dla danej jednostki.

Tabela 45. Minimalna kubatura pomieszczenia do montażu pompy ciepła Maxima

<table>
<thead>
<tr>
<th>model pompy ciepła</th>
<th>ilość czynnika chłodniczego [kg]</th>
<th>minimalna kubatura pomieszczenia [m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxima 7 GT</td>
<td>2,1</td>
<td>4,8</td>
</tr>
<tr>
<td>Maxima 10 GT</td>
<td>2,4</td>
<td>5,4</td>
</tr>
<tr>
<td>Maxima 12 GT</td>
<td>2,7</td>
<td>6,1</td>
</tr>
<tr>
<td>Maxima 16 GT</td>
<td>2,9</td>
<td>6,6</td>
</tr>
<tr>
<td>Maxima 20 GT</td>
<td>4,0</td>
<td>9,1</td>
</tr>
<tr>
<td>Maxima 28 GT</td>
<td>5,5</td>
<td>12,5</td>
</tr>
<tr>
<td>Maxima 34GT</td>
<td>6,0</td>
<td>13,6</td>
</tr>
<tr>
<td>Maxima 42 GT</td>
<td>7,0</td>
<td>15,9</td>
</tr>
</tbody>
</table>

- Montaż urządzenia powinien być przeprowadzony w taki sposób, by zapewnić swobodny dostęp w celu późniejszych przeglądów czy serwisowania. Należy pozostawić odstęp po minimum 50 cm od bocznych ścian urządzenia oraz 40 cm od ściany tylnej.

![Rys. 57. Montaż pompy ciepła Maxima - minimalne odległości (widok z góry)](image)

- Przy planowaniu miejsca montażu urządzenia należy pamiętać o konieczności jego wnoszenia w pozycji pionowej (maksymalne odchylenie wynosi 40° od osi pionowej)
- Pompa ciepła Maxima (7-16 GT) została wyposażona w zawór przełączający c.w.u., do realizacji ciepłej wody konieczny jest jedynie odpowiedni zasobnik c.w.u. (np. MAXI lub MAXI PLUS).
W modelach Maxima 20-42 GT zawór przełączający trójdrogowy jest elementem zewnętrznym, który może być sterowany przez regulator pompy ciepła.

Tabela 46. Dedykowany zawór trójdrogowy z siłownikiem dla pomp ciepła Maxima

<table>
<thead>
<tr>
<th>Model pomp ciepła</th>
<th>Specyfikacja</th>
<th>Numer katalogowy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxima 20-42 GT</td>
<td>VBI60.40-25L G6/4" GW, Kvs 25 m³/h</td>
<td>09-000201</td>
</tr>
<tr>
<td></td>
<td>GLB341.9E Siłownik do zaworu</td>
<td>09-000200</td>
</tr>
</tbody>
</table>

Rys. 58. Schemat przyłączy hydraulicznych pompy ciepła Maxima 7-16 GT

Rys. 59. Schemat przyłączy hydraulicznych pompy ciepła Maxima 20-42 GT
- Przyłącze rurowe zalega się wykonać z rury miedzianej o odpowiedniej średnicy wewnętrznej. Należy pamiętać o izolacji cieplnej.

<table>
<thead>
<tr>
<th>model pomp ciepła</th>
<th>przyłącze - średnica wewnętrzna rury [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxima 7 GT</td>
<td>Ø 20</td>
</tr>
<tr>
<td>Maxima 10-16 GT</td>
<td>Ø 26</td>
</tr>
<tr>
<td>Maxima 20-28 GT</td>
<td>Ø 32</td>
</tr>
<tr>
<td>Maxima 34-42 GT</td>
<td>Ø 39</td>
</tr>
</tbody>
</table>

- Do poprawnej pracy pompy ciepła konieczne jest starannie zaprojektowanie instalacji dolnego źródła (układu glikolowego). Zaleca się stosowanie glikolu propylenowego o stężeniu 30-35% (temperatura krzepnięcia -15°C).

6.3.3. Maxima - dobór zasobnika c.w.u. (MAXI, MAXI PLUS)

Do realizacji ciepłej wody użytkowej do pompy ciepła należy dobrać zbiornik z powiększoną powierzchnią wężownicy, który jest przeznaczony do pracy z pompą ciepła. Dla poprawnej pracy pomp ciepła w trybie realizacji c.w.u. konieczne jest zapewnienie odpowiedniej powierzchni wężownicy (A_w). Dla optymalnego doboru przyjmuje się, że na 1 kW mocy nominalnej pompy ciepła wymagane jest 0,3 m² powierzchni wężownicy.

$$A_w = \frac{Q_n}{p_w}$$

q_n - moc nominalna pompy ciepła w punkcie pracy A0W35 [kW]

p_w - optymalnie współczynnik ten wynosi 0,3 [m²/kW]

Przykładowo dla pompy ciepła Maxima 10 GT nominalna moc grzewcza wynosi 9,85 kW, obliczając zgodnie z powyższym wzorem wymaganą powierzchnię wężownicy:

$$A_w = \frac{9,85}{0,3} = 2,96 \text{ m}^2$$

Zatem możliwy jest dobór zasobnika MAXI 250 o powierzchni wężownicy 3 m². W przypadku doboru zbiornika z dwoma wężownicami można zastosować MAXI PLUS 400 z wężownicą do pompy ciepła o powierzchni 3,8 m². Poniżej zamieszczono tabelę z dedykowanymi zasobnikami c.w.u. do pomp ciepła z serii Maxima.

<table>
<thead>
<tr>
<th>model pomp ciepła</th>
<th>optymalna powierzchnia wężownicy [m²]</th>
<th>proponowany zasobnik MAXI</th>
<th>powierzchnia wężownicy w zbiorniku MAXI [m²]</th>
<th>proponowany zasobnik MAXI PLUS</th>
<th>powierzchnia wężownicy pod pompę ciepła w zbiorniku MAXI PLUS [m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxima 7 GT</td>
<td>2,18</td>
<td>MAXI 250</td>
<td>3,0</td>
<td>MAXI PLUS 300</td>
<td>2,2</td>
</tr>
<tr>
<td>Maxima 10 GT</td>
<td>2,96</td>
<td>MAXI 250</td>
<td>3,0</td>
<td>MAXI PLUS 400</td>
<td>3,8</td>
</tr>
<tr>
<td>Maxima 12 GT</td>
<td>3,75</td>
<td>MAXI 300</td>
<td>3,8</td>
<td>MAXI PLUS 400</td>
<td>3,8</td>
</tr>
<tr>
<td>Maxima 16 GT</td>
<td>4,97</td>
<td>MAXI 500</td>
<td>6,0</td>
<td>MAXI PLUS 500</td>
<td>4,8</td>
</tr>
<tr>
<td>Maxima 20 GT</td>
<td>5,88</td>
<td>MAXI 500</td>
<td>6,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maxima 28 GT</td>
<td>8,43</td>
<td>Brak w ofercie standardowych zbiorników o odpowiednio dużej wężownicy. W takich przypadkach stosowane są zbiorniki emailowane bez wężownic oraz niewymienione zbiorniki z wężownicą lub uławy z kilkoma zbiornikami.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maxima 34 GT</td>
<td>9,86</td>
<td>Brak w ofercie standardowych zbiorników o odpowiednio dużej wężownicy. W takich przypadkach stosowane są zbiorniki emailowane bez wężownic oraz niewymienione zbiorniki z wężownicą lub uławy z kilkoma zbiornikami.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maxima 42 GT</td>
<td>12,39</td>
<td>Brak w ofercie standardowych zbiorników o odpowiednio dużej wężownicy. W takich przypadkach stosowane są zbiorniki emailowane bez wężownic oraz niewymienione zbiorniki z wężownicą lub uławy z kilkoma zbiornikami.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dobór odpowiedniego zbiornika do pracy z pompą ciepła jest bardzo istotny, gdyż podłączenie pompy ciepła do wężownicy o zbyt małej powierzchni może skutkować błędem wysokiego ciśnienia w pompie.

Najprostszy układ z pompą ciepła Maxima to układ ze zbiornikiem ciepłej wody użytkowej i ogrzewaniem podłogowym podłączonym bezpośrednio.
6.3.4. Maxima - dobór bufora wody grzewczej SG(B)

Pojemność bufora do instalacji zależy od przyjętych założeń. Jeśli bufor ma być standardowym elementem stabilizującym, to podobnie jak dla pompy powietrznej, przyjmuje się pojemność 30 l/kW mocy nominalnej pompy ciepła. Jeżeli natomiast przewiduje się pracę pompy ciepła w systemie dwutyfrowym energii elektrycznej, wtedy bufor ma pełnić funkcję akumulatora, a jego pojemność przyjmuje się 60 l/kW mocy nominalnej pompy ciepła. Zatem pojemność bufora \(V_b \) można obliczyć ze wzoru:

\[
V_b = Q_n \cdot v
\]

\(Q_n \) - moc nominalna pompy ciepła w punkcie pracy B0W35 [kW]

\(v \) - zalecany standardowo współczynnik: 30 l/kW (w przypadku pracy w systemie dwutyfrowym 60 l/kW)
Poniżej zamieszczono tabelę z proponowanymi modelami buforów:

Tabela 49. Proponowane zbiorniki buforowe dla pompy ciepła Maxima - przy założeniu 30 l/kW mocy nominalnej

<table>
<thead>
<tr>
<th>model pompy ciepła</th>
<th>sugerowana pojemność bufora [l]</th>
<th>proponowane bufory</th>
<th>rzeczywista pojemność proponowanego bufora [l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxima 7 GT</td>
<td>218</td>
<td>SG(B) 200</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG(B) 300</td>
<td>305</td>
</tr>
<tr>
<td>Maxima 10 GT</td>
<td>296</td>
<td>SG(B) 300</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG(B) 400</td>
<td>396</td>
</tr>
<tr>
<td>Maxima 12 GT</td>
<td>375</td>
<td>SG(B) 500</td>
<td>467</td>
</tr>
<tr>
<td>Maxima 16 GT</td>
<td>497</td>
<td>SG(B) 800</td>
<td>728</td>
</tr>
<tr>
<td>Maxima 20 GT</td>
<td>588</td>
<td>SG(B) 1000</td>
<td>883</td>
</tr>
<tr>
<td>Maxima 28 GT</td>
<td>843</td>
<td>SG(B) 1500</td>
<td>1479</td>
</tr>
<tr>
<td>Maxima 34 GT</td>
<td>986</td>
<td>SG(B) 1000</td>
<td>883</td>
</tr>
<tr>
<td>Maxima 42 GT</td>
<td>1239</td>
<td>SG(B) 1500</td>
<td>1479</td>
</tr>
</tbody>
</table>

Jeżeli do bufora podłączony ma być kocioł lub kominek jako dodatkowe źródło to można wykorzystać model bufora z wężownicą. Tradycyjny układ z pompą ciepła Maxima zbiornikiem buforowym oraz zasobnikiem c.w.u. MAXI przedstawia się następująco:

6.3.5. Maxima - dobór zbiornika kombinowanego SG(K)

Zbiornik kombinowany stosowany jest do połączenia większej ilości źródeł, przykładowo pompy ciepła, kotła i kolektorów słonecznych. Konstrukcyjnie zbiornik ten łączy bufor z zasobnikiem c.w.u., co pozwala zaoszczędzić miejsce w kotłowni. Stosowany może być również w instalacjach, w których dobранa moc pompy ciepła jest duża w stosunku do zapotrzebowania na ciepłą wodę użytkową (pojawia się problem doboru zbiornika z odpowiednio dużą powierzchnią wężownicy). Dobór pojemności buforowej jest analogiczny do przedstawionego powyżej schematu doboru pojemności bufora.

![Rys. 61. Schemat układu z pompą ciepła Maxima (7-16 GT), zbiornikiem buforowym, zasobnikiem MAXI](image-url)
Tabela 50. Proponowane zbiorniki kombinowane (zbiornik w zbiorniku) dla pompy ciepła Maxima - przy założeniu 30 l/kW mocy nominalnej

<table>
<thead>
<tr>
<th>model pompy ciepła</th>
<th>sugerowana pojemność bufora [l]</th>
<th>proponowane zbiorniki kombinowane</th>
<th>rzeczywista pojemność buforowa [l]</th>
<th>rzeczywista pojemność zasobnika c.w.u. [l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxima 7 GT</td>
<td>218</td>
<td>SG(K) 300/80</td>
<td>220</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG(K) 380/120</td>
<td>260</td>
<td>120</td>
</tr>
<tr>
<td>Maxima 10 GT</td>
<td>296</td>
<td>SG(K) 500/160</td>
<td>340</td>
<td>160</td>
</tr>
<tr>
<td>Maxima 12 GT</td>
<td>375</td>
<td>SG(K) 500/160</td>
<td>340</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG(K) 600/200</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>Maxima 16 GT</td>
<td>497</td>
<td>SG(K) 600/200</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>Maxima 20 GT</td>
<td>588</td>
<td>SG(K) 800/200</td>
<td>600</td>
<td>200</td>
</tr>
<tr>
<td>Maxima 28 GT</td>
<td>843</td>
<td>SG(K) 1000/200</td>
<td>800</td>
<td>200</td>
</tr>
</tbody>
</table>

Poniżej przedstawiono przykładowy schemat instalacji z pompą Maxima oraz kolektorami słonecznymi, które służą w tym przypadku do ogrzewania c.w.u. i wspomagania centralnego ogrzewania.

Rys. 62. Schemat instalacji z pompą ciepła Maxima (7-16 GT), kolektorami słonecznymi i zbiornikiem kombinowanym

6.3.6. Maxima - wstępny szacunkowy dobór systemu z gruntową pompą ciepła dla standardowego budynku

Poniżej przedstawiono pomocne diagramy pozwalające na wstępny dobór rozwiązania dla standardowego domu jednorodzinnego (o zapotrzebowaniu 50 W/m² i zużyciu ciepłej wody użytkowej 200 l/dobę).

W przypadku wyboru ogrzewania niskotemperaturowego (podłogowe, ścianne) pompa ciepła Maxima 7-16 GT, przy określonych wyżej założeniach, przeznaczona jest do budynków o powierzchni ogrzewanej do około 320 m². Diagramy doborowe dla ogrzewania niskotemperaturowego poniżej.
Ogrzewanie niskotemperaturowe

<table>
<thead>
<tr>
<th>Budynek (o standardowym zapotrzebieniu 50 W/m² i zużyciu c.w.u. 200 l/dobę) o powierzchni do 320 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 130 m²</td>
</tr>
<tr>
<td>Maxima 7 GT</td>
</tr>
<tr>
<td>+ MAXI 250 + SG(B) 200</td>
</tr>
</tbody>
</table>

W przypadku modeli pomp ciepła Maxima dużej mocy (20-42 GT) możemy zapewnić ciepło w budynkach o powierzchniach nawet do 830 m² z ogrzewaniem niskotemperaturowym.

Ogrzewanie wysokotemperaturowe

<table>
<thead>
<tr>
<th>Budynek (o standardowym zapotrzebieniu 50 W/m² i zużyciu c.w.u. 200 l/dobę) o powierzchni od 330 m² do 830 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>330-390 m²</td>
</tr>
<tr>
<td>Maxima 20 GT</td>
</tr>
<tr>
<td>+ MAXI 500 + SG(B) 800</td>
</tr>
</tbody>
</table>

Przy wyborze ogrzewania wysokotemperaturowego (grzejnikowe) pompa ciepła Maxima 7-16 GT, przy wyżej określonych założeniach, przeznaczona jest do domów o powierzchni ogrzewanej do maksymalnie 300 m². Diagram doborowy dla ogrzewania wysokotemperaturowego poniżej:

Ogrzewanie wysokotemperaturowe

<table>
<thead>
<tr>
<th>Budynek (o standardowym zapotrzebieniu 50 W/m² i zużyciu c.w.u. 200 l/dobę) o powierzchni do 300 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 130 m²</td>
</tr>
<tr>
<td>Maxima 7 GT</td>
</tr>
<tr>
<td>+ MAXI 250 + SG(B) 200</td>
</tr>
</tbody>
</table>

Wybierając modele Maxima 20-42 GT możemy zapewnić ciepło w obiekcie do 840 m² (ogrzewanie grzejnikowe). W przypadku modeli o wysokiej mocy grzewczej niemożliwe staje się dobranie zbiornika o odpowiednio dużej powierzchni wymiany ciepła. Konieczne w takim przypadku jest stosowanie zewnętrznych wymienników ciepła lub układów z kilkoma zbiornikami dla uzyskania odpowiedniej powierzchni wymiany ciepła. Dlatego też jedynie dla pompy ciepła Maxima 20 GT zaproponowano zasobnik na ciepłą wodę użytkową typu MAXI. Dla kolejnych modeli na poniższym diagramie zawarto jedynie bufory.

Ogrzewanie wysokotemperaturowe

<table>
<thead>
<tr>
<th>Budynek (o standardowym zapotrzebieniu 50 W/m² i zużyciu c.w.u. 200 l/dobę) o powierzchni od 310 m² do 840 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>310-400 m²</td>
</tr>
<tr>
<td>Maxima 20 GT</td>
</tr>
<tr>
<td>+ MAXI 500 + SG(B) 800</td>
</tr>
</tbody>
</table>
6.4. Projektowanie dolnego źródła pompy ciepła Maxima

Dolne źródło gruntowej pompy ciepła jest bardzo ważnym elementem instalacji. Poprawne jego zaprojektowanie gwarantuje poprawną pracę urządzenia. Istotne jest uwzględnienie uwarunkowań lokalnych. Wybór sondy pionowej niesie za sobą wyższe koszty inwestycyjne, niż w przypadku wymiennika poziomego, lecz koszty eksploatacyjne pompy gruntowej z wymiennikiem pionowym są nieco niższe. Zatem ponownie inwestor musi dokonać wyboru optymalnego rozwiązania.

6.4.1. Dobór sondy pionowej, wytyczne projektowe

Na sondy pionowe pada wybór zawsze w przypadku małej powierzchni terenu możliwej do zagospodarowania. Jednak należy mieć na uwadze, że aby sondy pionowe były prawidłowo wykonane, należy zachować pewne odległości od fundamentów (1,5 m), czy też granicy działki (3 m). Konieczne jest również zachowanie odpowiedniej odległości pomiędzy odwiertami (6-8 m w zależności od głębokości odwiertu). Rury doprowadzające prowadzi się 20-40 cm poniżej strefy przemarzania gruntu. Rozdzielacz zazwyczaj umieszcza się w studzience, tak by mieć do niego swobodny dostęp. Stosowane są również rozdzielacze wewnętrzne - naścienne.

Rys. 63. Usytuowanie sondy pionowej w gruncie - wymagane odległości

Minimalne odległości:
- od fundamentów B > 1,5 m
- minimalna głębokość (C), od 20 do 40 cm poniżej strefy przemarzania gruntu
- A = 6 m przy głębokości H < 70 m
- A = 8 m przy głębokości 70 ≤ H < 100 m
- Od granicy posesji min. 3 m
- Od instalacji wodociągowych, kanalizacyjnych, elektrycznych, gazowych, ciepłowniczych itp., koron drzew o głębokich korzeniach min. 1,5 m
Jeśli chodzi o określenie długości odwiertu, to następuje to po określaniu jednostkowej wydajności cieplnej gruntu. Cyli ilości energii, jaką możemy pobierać z gruntu na jeden metr bieżący wymiennika. Dokładną wartość można poznać przez wykonanie TRT (Test reakcji termicznej) lub na podstawie znajomości rozkładu geologicznego warstw gruntu. Znając rozkład możliwe jest obliczenie współczynnika przewodzenia ciepła dla danego gruntu. Poniżej pomocna tabela z przybliżonymi wydajnościami cieplnymi gruntu:

Tabela 51. Jednostkowa wydajność cieplna gruntu-sonda pionowa

<table>
<thead>
<tr>
<th>rodzaj gleby</th>
<th>szacunkowa wydajność cieplna [W/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>suche podłoże ((\lambda < 1,5 \text{ W} / (\text{m} \cdot \text{K})))</td>
<td>20-25</td>
</tr>
<tr>
<td>normalne podłoże i nasycony wodą sedymen ((1,5 \text{ W} / (\text{m} \cdot \text{K}) < \lambda < 3,0 \text{ W} / (\text{m} \cdot \text{K})))</td>
<td>50-60</td>
</tr>
<tr>
<td>stała skała o wysokiej przewodności cieplnej ((\lambda > 3,0 \text{ W} / (\text{m} \cdot \text{K})))</td>
<td>70-84</td>
</tr>
</tbody>
</table>

Jeżeli wydajność gruntu nie jest dokładnie znana to można szacunkowo przyjąć tą wartość na poziomie 40 W/m. Czas pracy sprężarki w ciągu roku nie powinien przekraczać 2000 h/rok. Jeżeli przekracza, to dolne źródło będzie bardziej obciążone. W tym przypadku by umożliwić prawidłową regenerację cieplną gruntu zaleca się zwiększenie długości sondy o 5% na każde 100 godzin wykraczające ponad granicę 2000 h. Przykładowo gdy czas pracy będzie wynosić 2300 h/rok to należy wydłużyć długość wymiennika o 15%. Aby obliczyć długość odwiertu należy postąpić się mocą chłodniczą danego urządzenia, która będzie pobierana z gruntu.

Tabela 52. Moc chłodnicza pomp ciepła Maxima

<table>
<thead>
<tr>
<th>model pompy ciepła</th>
<th>Maxima 7 GT</th>
<th>Maxima 10 GT</th>
<th>Maxima 12 GT</th>
<th>Maxima 16 GT</th>
<th>Maxima 20 GT</th>
<th>Maxima 28 GT</th>
<th>Maxima 34GT</th>
<th>Maxima 42 GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>moc chłodnicza [W]</td>
<td>5570</td>
<td>7640</td>
<td>9720</td>
<td>12800</td>
<td>15330</td>
<td>22080</td>
<td>25380</td>
<td>32180</td>
</tr>
</tbody>
</table>

Z ilorazu mocy chłodniczej urządzenia i jednostkowej wydajności gruntu otrzymujemy wymaganą długość odwiertów \(l_o \):

\[
 l_o = \frac{Q_{\text{chn}}}{q_v}
\]

\(Q_{\text{chn}} \) - moc chłodnicza nominalna pomp ciepła w punkcie pracy B0W35 [W]
\(q_v \) – jednostkowa wydajność cieplna gruntu [W/m]

Zatem przykładowo dla pomp Maxima 7 GT, zakładając odbiór ciepła z gruntu \(q_v \) na poziomie 40 W/m otrzymamy:

\[
 l_o = \frac{5570}{40} = 139,25 \text{ m}
\]

Wymaganą długość wymiennika wynosi niespełna 140 m, zatem konieczne byłoby wykonanie dwóch odwiertów po 70 m. Poniżej w tabeli zamieszczone szacowane długości odwiertów dla wszystkich modeli pomp ciepła Maxima.

Tabela 53. Szacunkowa długość wymiennika - sonda pionowa (przy założeniu 40 W/m)

<table>
<thead>
<tr>
<th>model pompy ciepła</th>
<th>wymagana szacunkowa długość wymiennika [m]</th>
<th>wymagana ilość odwiertów [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxima 7 GT</td>
<td>139</td>
<td>2 x 70 m</td>
</tr>
<tr>
<td>Maxima 10 GT</td>
<td>191</td>
<td>2 x 96 m</td>
</tr>
<tr>
<td>Maxima 12 GT</td>
<td>243</td>
<td>3 x 81 m</td>
</tr>
<tr>
<td>Maxima 16 GT</td>
<td>326</td>
<td>4 x 82 m</td>
</tr>
<tr>
<td>Maxima 20 GT</td>
<td>383</td>
<td>4 x 96 m</td>
</tr>
<tr>
<td>Maxima 28 GT</td>
<td>552</td>
<td>6 x 92 m</td>
</tr>
<tr>
<td>Maxima 34 GT</td>
<td>635</td>
<td>7 x 91 m</td>
</tr>
<tr>
<td>Maxima 42 GT</td>
<td>805</td>
<td>9 x 89 m</td>
</tr>
</tbody>
</table>

Wymiennik jak wcześniej wspominano można wykonać w wersji pojedynczej, bądź podwójnej u-rury o średnicy 32 lub 40 mm. Wybór rozwiązania nie wpływa na wymaganą długość odwiertów, charakteryzuje się one jedynie różnymi oporami przepływu.
6.4.2. Dobór wymiennika poziomego, wytyczne projektowe

Wymiennik poziomy wymaga znacznej powierzchni niezagospodarowanego terenu. Należy oczywiście zachować odpowiednie odległości od fundamentów (1,5 m), granicy działki (3 m). Rury doprowadzające i wymiennik właściwy prowadzi się 20-40 cm poniżej strefy przemarzania gruntu. Rozdzielacz zazwyczaj umieszcza się w studzience, tak by mieć do niego swobodny dostęp. Stosowane są również rozdzielacze wewnętrzne - naścienne.

Minimalne odległości:
- od fundamentów $B > 0,5m$
- minimalna głębokość (C), od 20 do 40 cm poniżej strefy przemarzania gruntu
- od granicy posesji min. 3 m
- od instalacji wodociągowych, kanalizacyjnych, elektrycznych, gazowych, ciepłowniczych itp., koron drzew o głębokich korzeniach min. 1,5 m

Jeśli chodzi o projektowanie wymiennika poziomego to podobnie jak w przypadku sondy pionowej znaczenie ma wydajność cieplna gruntu. Znając strukturę geologiczną gruntu można przyjmować następujące wartości jej wydajności:

<table>
<thead>
<tr>
<th>rodzaj gleby</th>
<th>szacunkowa wydajność cieplna [W/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>sucha gleba piaszczysta</td>
<td>10-15</td>
</tr>
<tr>
<td>wilgotna gleba piaszczysta</td>
<td>15-20</td>
</tr>
<tr>
<td>sucha gleba gliniasta</td>
<td>20-25</td>
</tr>
<tr>
<td>wilgotna gleba gliniasta</td>
<td>25-30</td>
</tr>
<tr>
<td>gleba prowadząca wody gruntowe</td>
<td>30-35</td>
</tr>
</tbody>
</table>

W przypadku braku rozpoznania geologicznego można szacunkowo przyjąć wartość 20 W/m². Czas pracy sprężarki w ciągu roku ze względu na regenerację gruntu nie powinien przekraczać 2000 h/rok. Jeżeli prognozowany czas pracy jest większy, by umożliwić prawidłową regenerację cieplną gruntu, zaleca się zwiększenie powierzchni wymiennika o 5% na każde 100 godzin wykraczające ponad wartość 2000 h. Przykładowo gdy czas pracy będzie wynosić 2200 h/rok to należy zwiększyć powierzchnię wymiennika o 10%. W instalacji dolnego źródła zaleca się wykonanie minimum 2 pętli (2 obiegi poziomowego wymiennika gruntowego), powinny być również długości. Aby obliczyć powierzchnię wymiennika, podobnie jak w przypadku sondy pionowej, należy posłużyć się mocą chłodniczą danego urządzenia, która będzie pobierana z gruntu.
Tabela 55. Moc chłodnicza pomp ciepła Maxima

<table>
<thead>
<tr>
<th>model pompy ciepła</th>
<th>Maxima 7 GT</th>
<th>Maxima 10 GT</th>
<th>Maxima 12 GT</th>
<th>Maxima 16 GT</th>
<th>Maxima 20 GT</th>
<th>Maxima 28 GT</th>
<th>Maxima 34GT</th>
<th>Maxima 42 GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>moc chłodnicza [W]</td>
<td>5570</td>
<td>7640</td>
<td>9720</td>
<td>12800</td>
<td>15330</td>
<td>22080</td>
<td>25380</td>
<td>32180</td>
</tr>
</tbody>
</table>

Z ilorazu mocy chłodniczej urządzenia i jednostkowej wydajności gruntu otrzymujemy wymaganą powierzchnię kolektora gruntowego \(l_o \):

\[
l_o = \frac{Q_{ch}}{q_v}
\]

\(Q_{ch} \) – moc chłodnicza nominalna pompy ciepła w punkcie pracy B0W35 [W]
\(q_v \) – jednostkowa wydajność cieplna gruntu [W/m²]

Przykładowo dla pompy ciepła Maxima 10 GT, zakładając odbiór ciepła z gruntu (\(q_v \)) na poziomie 20 W/m² otrzymamy:

\[
l_o = \frac{7640}{20} = 382 \text{ m}^2
\]

Wymagana powierzchnia wymiennika poziomego wynosi 382 m².

W tym momencie należy dokonać wyboru jaki rodzaj wymiennika poziomego zastosować. Można zdecydować się na wymiennik meandryczny lub spiralny. Rodzaje wymienników zostały opisane wyżej w opracowaniu.

W przypadku wymiennika meandrycznego kolejnym krokiem jest określenie rozstawu rur i jej długości. Stosowane są rozstawy: 0,6-1,0 m. Zalecany rozstaw zależny jest od rodzaju gruntu:

Tabela 56. Zalecany rozstaw i średnica rury wymiennika poziomego

<table>
<thead>
<tr>
<th>rodzaj gleby</th>
<th>zalecany rozstaw rur [m]</th>
<th>proponowana średnica rury d x g [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>suchy grunt</td>
<td>0,6</td>
<td>25 x 2,3</td>
</tr>
<tr>
<td>przeciętny grunt</td>
<td>0,7</td>
<td>32 x 2,9</td>
</tr>
<tr>
<td>wilgotny grunt</td>
<td>0,8-1,0</td>
<td>40 x 3,7</td>
</tr>
</tbody>
</table>

Wybierając rozstaw rur możliwe jest wyznaczenie przybliżonej długości rury wymiennika poziomego \(l_o \):

\[
l_o = \frac{A_o}{e_o}
\]

\(A_o \) – wymagana powierzchnia wymiennika [m²]
\(e_o \) – rozstaw rur [m]

Zatem dla analizowanego przykładu:

\[
l_o = \frac{382}{0,7} = 546 \text{ m}
\]

Całkowitą długość rury należy podzielić na pętle. Zalecana długość pojedynczej pętli zależna jest od średnicy zastosowanej rury:

Tabela 57. Minimalna i maksymalna długość pętli w zależności od zastosowanej średnicy wymiennika

<table>
<thead>
<tr>
<th>zastosowana średnica rury [mm]</th>
<th>minimalna długość pętli [m]</th>
<th>maksymalna długość pętli [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>50</td>
<td>125</td>
</tr>
<tr>
<td>32</td>
<td>80</td>
<td>200</td>
</tr>
<tr>
<td>40</td>
<td>140</td>
<td>300</td>
</tr>
</tbody>
</table>
Poniżej w tabeli zamieszczono szacowane powierzchnie wymiennika poziomego dla wszystkich modeli pomp ciepła Maxima.

<table>
<thead>
<tr>
<th>model pomp ciepła</th>
<th>wymagana szacunkowa powierzchnia wymiennika [m²]</th>
<th>zastosowana średnica rur [mm]</th>
<th>rozstaw rur [m]</th>
<th>szacunkowa długość rur [m]</th>
<th>propozowana ilość i długość pętli wymiennika [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxima 7 GT</td>
<td>279</td>
<td>25</td>
<td>0.6</td>
<td>465</td>
<td>4 x 116 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>0.7</td>
<td>399</td>
<td>3 x 133 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>0.8</td>
<td>349</td>
<td>2 x 175 m</td>
</tr>
<tr>
<td>Maxima 10 GT</td>
<td>382</td>
<td>25</td>
<td>0.6</td>
<td>637</td>
<td>6 x 106 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>0.7</td>
<td>546</td>
<td>5 x 137 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>0.8</td>
<td>478</td>
<td>2 x 239 m</td>
</tr>
<tr>
<td>Maxima 12 GT</td>
<td>486</td>
<td>25</td>
<td>0.6</td>
<td>810</td>
<td>8 x 101 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>0.7</td>
<td>694</td>
<td>5 x 139 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>0.8</td>
<td>608</td>
<td>3 x 203 m</td>
</tr>
<tr>
<td>Maxima 16 GT</td>
<td>651</td>
<td>25</td>
<td>0.6</td>
<td>1085</td>
<td>9 x 121 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>0.7</td>
<td>930</td>
<td>7 x 133 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>0.8</td>
<td>814</td>
<td>4 x 204 m</td>
</tr>
<tr>
<td>Maxima 20 GT</td>
<td>767</td>
<td>25</td>
<td>0.6</td>
<td>1278</td>
<td>11 x 116 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>0.7</td>
<td>1096</td>
<td>6 x 183 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>0.8</td>
<td>959</td>
<td>4 x 240 m</td>
</tr>
<tr>
<td>Maxima 28 GT</td>
<td>1104</td>
<td>25</td>
<td>0.6</td>
<td>1840</td>
<td>15 x 123 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>0.7</td>
<td>1577</td>
<td>8 x 197 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>0.8</td>
<td>1380</td>
<td>5 x 276 m</td>
</tr>
<tr>
<td>Maxima 34 GT</td>
<td>1269</td>
<td>25</td>
<td>0.6</td>
<td>2115</td>
<td>17 x 124 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>0.7</td>
<td>1813</td>
<td>10 x 181 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>0.8</td>
<td>1586</td>
<td>6 x 264 m</td>
</tr>
<tr>
<td>Maxima 42 GT</td>
<td>1609</td>
<td>25</td>
<td>0.6</td>
<td>2682</td>
<td>22 x 122 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>0.7</td>
<td>2299</td>
<td>12 x 192 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>0.8</td>
<td>2011</td>
<td>7 x 287 m</td>
</tr>
</tbody>
</table>

Wymiennik spiralny występuje w sekcjach o długości rury 125 m, stosowana średnica to 32 mm. Powierzchnia zajmowana przez jedną sekcję wymiennika to 80 m². Przewagą wymiennika spiralnego jest mniejsza powierzchnia prac ziemnych, gdyż do jego wykonania konieczne jest jedynie wykopanie rowów o szerokości 1 m. Natomiast w przypadku wymiennika meandrycznego konieczne jest całkowite zebranie warstwy gruntu, pod którą będzie ułożony wymiennik.

Rys. 65. Wymiennik spiralny
Wybierając wymiennik spiralny, dolne źródło dla pompy ciepła Maxima będzie przedstawiać się następująco:

Tabela 59. Szacunkowa powierzchnia wymiennika poziomego (przy założeniu 20 W/m²) - dobór wymiennika poziomego spiralnego

<table>
<thead>
<tr>
<th>model pompy ciepła</th>
<th>wymagana szacunkowa powierzchnia wymiennika [m²]</th>
<th>proponowany wymiennik spiralny (ilość pętli 125 m)</th>
<th>przybliżona wymagana powierzchnia gruntu [m²]</th>
<th>powierzchnia prac ziemnych [m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxima 7 GT</td>
<td>279</td>
<td>4</td>
<td>360</td>
<td>72</td>
</tr>
<tr>
<td>Maxima 10 GT</td>
<td>382</td>
<td>5</td>
<td>450</td>
<td>90</td>
</tr>
<tr>
<td>Maxima 12 GT</td>
<td>486</td>
<td>7</td>
<td>540</td>
<td>126</td>
</tr>
<tr>
<td>Maxima 16 GT</td>
<td>651</td>
<td>8</td>
<td>630</td>
<td>144</td>
</tr>
<tr>
<td>Maxima 20 GT</td>
<td>767</td>
<td>9</td>
<td>810</td>
<td>162</td>
</tr>
<tr>
<td>Maxima 28 GT</td>
<td>1104</td>
<td>13</td>
<td>1170</td>
<td>234</td>
</tr>
<tr>
<td>Maxima 34 GT</td>
<td>1269</td>
<td>15</td>
<td>1350</td>
<td>270</td>
</tr>
<tr>
<td>Maxima 42 GT</td>
<td>1609</td>
<td>18</td>
<td>1620</td>
<td>324</td>
</tr>
</tbody>
</table>

7. PODSUMOWANIE

Pompy ciepła to technologia pozwalająca na wykorzystanie odnawialnych źródeł energii w postaci gruntu, czy też powietrza atmosferycznego. Wykorzystując dodatkowo do jej napędu energię elektryczną wytworzoną z OZE (np. z instalacji fotowoltaicznej czy elektrowni wiatrowej) uzyskujemy zupełnie bezemisyjną technologię grzewczą. Pompa ciepła może również pełnić rolę głównego źródła ciepła w hybrydowym systemie grzewczym. Źródłami uzupełniającymi sytemu mogą być przykładowo kolektory słoneczne, czy też kocioł pelletowy. Decyzja o wyborze optymalnego i komfortowego systemu grzewczego nie jest łatwym zadaniem dla inwestora, warto w tym przypadku stawiać na odnawialne źródła z myślą o otaczającym nas środowisku.

Badania pomp ciepła Galmet zostały przeprowadzone przez:

Strojírenský zkušební ústav, s.p. (SZU), Hudcova 424/56b, CZ-621 00 Brno, Czechy

Uwaga: Autor tego opracowania oświadcza, że dokołżył starań aby wykluczyć w nim wszelkie nieprawidłowości, jednak nie ponosi odpowiedzialności za ewentualne błędy w opracowaniu, oraz za wszelkie negatywne skutki i straty wynikające z korzystania nęgo.
HYBRYDOWE SYSTEMY GRZEWCZE GALMET

Wybierając hybrydowy system grzewczy zyskujesz:

- Nawet do 5 000 zł rabatu w porównaniu z zakupem urządzeń osobno.
- Jednego producenta, instalatora i serwis całego systemu.
- Pomoc naszego doradcy w doborze i konfiguracji urządzeń.
- Pomoc w znalezieniu lokalnego wykonawcy instalacji.
- Systemy, w skład których wchodzą urządzenia korzystające z odnawialnych źródeł energii (OZE), kwalifikują się do dofinansowania z programów regionalnych lub ogólnopolskich.
- Poprawiasz jakość środowiska naturalnego, w którym żyjesz.

Zakup wszystkich urządzeń od jednego producenta pozwala na zastosowanie dowolnej kombinacji wielu urządzeń, przy pewności optymalnego działania całego systemu. Wszystko po to, by sprostać indywidualnym wymaganiom każdego klienta.

Przykładowy hybrydowy system grzewczy Galmet:

- wymiennik c.w.u.
- kolektory słoneczne
- pompa ciepła

Produkujemy w Polsce
System hybrydowy α - alfa

Założenia projektowe:
- Do podgrzewania c.w.u.
- Ilość osób: 2-4

W skład systemu wchodzi:
- 2 kolektory miedziane
 KSG 21 Premium GT z osprzętem
- Pompa ciepła Spectra 200

System hybrydowy β - beta

Założenia projektowe:
- Powierzchnia grzewcza do 160 m²
- Ilość osób: 3-4

W skład systemu wchodzi:
- Pompa ciepła Spectra 200
- Kocioł c.o. na pellet Genesis KPP

Przedstawione projekty instalacji są wyłącznie rozwiązaniami przykładowymi i zostały stworzone zgodnie z istniejącymi standardami. Należy również pamiętać, aby przy każdej inwestycji projekt był skonsultowany z projektantem i dostosowany do istniejących warunków i wymogów konkretnej instalacji. Urządzenia wchodzące w skład systemów hybrydowych nie podlegają stanowcom rabatowaniu i nie mogą być rozdzielane w celu dalszej odsprzedaży.
PRZYKŁADOWE SCHEMATY HYBRYDOWYCH SYSTEMÓW GRZEWCZYCH GALMET

System hybrydowy γ - gamma

Założenia projektowe:
- Powierzchnia grzewcza do 180 m²
- Ilość osób: 3-4

W skład systemu wchodzi:
- Pompa ciepła Basic 200
- Kocioł c.o. Galaxia KWE 18 kW

System hybrydowy Δ - delta

Założenia projektowe:
- Powierzchnia grzewcza do 220 m²
- Ilość osób: 3-4

W skład systemu wchodzi:
- Pompa ciepła Basic 270
- Kocioł c.o. Galaxia KWE 22 kW
- 2 kolektory aluminiowe KSG 27 GT z osprzętem

Przedstawione projekty instalacji są wyłącznie rozwiązaniami przykładowymi i zostały stworzone zgodnie z istniejącymi standardami. Należy również pamiętać, aby przy każdej inwestycji projekt był skonsultowany z projektantem i dostosowany do istniejących warunków i wymogów konkretnej instalacji. Urządzenia wchodzące w skład systemów hybrydowych nie podlegają standardowemu rabatowaniu i nie mogą być rozdzielane w celu dalszej odsprzedaży.
PRZYKŁADOWE SCHEMATY HYBRYDOWYCH SYSTEMÓW GRZEWCZYCH GALMET

System hybrydowy

Energy Max GT

Założenia projektowe:
- Powierzchnia grzewcza do 150 m²
- Ilość osób: 4-6

W skład systemu wchodzi:
- Pompa ciepła Maxima 10 GT
- Zestaw fotowoltaiczny ON-GRID 2,5 kW z inwerterem 3-fazowym
- Wymiennik SGW(S) MAXI 300

System hybrydowy

η - eta

Założenia projektowe:
- Powierzchnia grzewcza do 180 m²
- Ilość osób: 3-5

W skład systemu wchodzi:
- Pompa ciepła Maxima 12 GT
- Wymiennik SGW(S) MAXI 300
- Zbiornik buforowy 400

Przedstawione projekty instalacji są wyłącznie rozwiązaniami przykładowymi i zostały stworzone zgodnie z istniejącymi standardami. Należy również pamiętać, aby przy każdej inwestycji projekt był skonsultowany z projektantem i dostosowany do istniejących warunków i wymogów konkretnej instalacji. Urządzenia wchodzące w skład systemów hybrydowych nie podlegają standardowemu rabatowaniu i nie mogą być rozdzielane w celu dalszej odsprzedaży.
System hybrydowy
Jota eco blue

Założenia projektowe:
- Powierzchnia grzewcza do 130 m²
- Ilość osób: 3-5

W skład systemu wchodzi:
- Pompa ciepła Airmax® 9 GT
- Kocioł gazowy jednofunkcyjny PAROS GREEN 25 R.S.I.
- Wymiennik SGW(S) MAXI 250
- Zbiornik buforowy 300

System hybrydowy
Mini

Założenia projektowe:
- Powierzchnia grzewcza do 150 m²
- Ilość osób: 3-4

W skład systemu wchodzi:
- Pompa ciepła Spectra 200
- Kocioł c.o. Galaxia KWE 15 kW

Przedstawione projekty instalacji są wyłącznie rozwiązaniami przykładowymi i zostały stworzone zgodnie z istniejącymi standardami. Należy również pamiętać, aby przy każdej inwestycji projekt był skonsultowany z projektantem i dostosowany do istniejących warunków i wymogów konkretnej instalacji.

Urządzenia wchodzące w skład systemów hybrydowych nie podlegają standardowemu rabatowaniu i nie mogą być rozdzielane w celu dalszej odsprzedaży.
Urządzenia wchodzące w skład systemów hybrydowych nie podlegają standardowemu rabatowaniu i nie mogą być rozdzielane w celu dalszej odsprzedaży.

Przedstawione projekty instalacji są wyłącznie rozwiązaniami przykładowymi i zostały stworzone zgodnie z istniejącymi standardami. Należy również pamiętać, aby przy każdej inwestycji projekt był optymalnie dobrany, hybrydowy system grzewczy dla Twojego domu!

5 000 zł rabatu na optymalnie dobrany, hybrydowy system grzewczy dla Twojego domu!

Nie znalazłeś zestawu dla siebie? Skontaktuj się z doradcą technicznym GALMET i zyskaj 5 000 zł rabatu na optymalnie dobrany, hybrydowy system grzewczy dla Twojego domu!

WYKAZ HYBRYDOWYCH SYSTEMÓW GRZEWCzych GALMET

<table>
<thead>
<tr>
<th>nazwa systemu</th>
<th>nr katalogowy</th>
<th>skład systemu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Flow GT</td>
<td>SG-000013</td>
<td>- pompa ciepła Spectra 200 (nr kat. 09-363100) - zestaw fotowoltaiczny ON-GRID o mocy 2,0 kW z inwerterem 1-fazowym (nr kat. 10-901100)</td>
</tr>
<tr>
<td>Energy Max GT</td>
<td>SG-000014</td>
<td>- zestaw fotowoltaiczny ON-GRID o mocy 2,5 kW z inwerterem 3-fazowym (nr kat. 10-901101) - wymiennik SGW(S) Maxi 300 (nr kat. 26-308100)</td>
</tr>
<tr>
<td>Energy Air GT</td>
<td>SG-000016</td>
<td>- zestaw fotowoltaiczny ON-GRID o mocy 2,5 kW z inwerterem 3-fazowym (nr kat. 10-901101) - wymiennik SGW(S) Maxi 300 (nr kat. 26-308100)</td>
</tr>
<tr>
<td>α - alpha</td>
<td>SG-000017</td>
<td>- 2 kolektory KSG 21 Premium GT (nr kat. 08-102102) + osprzęt</td>
</tr>
<tr>
<td>β - beta</td>
<td>SG-000018</td>
<td>- pompa ciepła Spectra 200 (nr kat. 09-363100) - zestaw fotowoltaiczny ON-GRID o mocy 2,0 kW z inwerterem 1-fazowym (nr kat. 10-901100)</td>
</tr>
<tr>
<td>γ - gamma</td>
<td>SG-000019</td>
<td>- pompa ciepła Basic 200 (nr kat. 09-355202) - kocioł c.o. Galaxia KWE 18 kW (nr kat. 07-182430)</td>
</tr>
<tr>
<td>Δ - delta</td>
<td>SG-000020</td>
<td>- zestaw fotowoltaiczny ON-GRID o mocy 2,0 kW z inwerterem 2-fazowym (nr kat. 10-102120) + osprzęt</td>
</tr>
<tr>
<td>ϵ - epsilon</td>
<td>SG-000021</td>
<td>- zestaw fotowoltaiczny ON-GRID o mocy 2,5 kW z inwerterem 3-fazowym (nr kat. 10-901101) - 2 kolektory KSG 27 GT (nr kat. 08-102712) + osprzęt</td>
</tr>
<tr>
<td>ζ - zeta</td>
<td>SG-000022</td>
<td>- pompa ciepła Spectra 200 (nr kat. 09-363100) - zestaw fotowoltaiczny ON-GRID o mocy 2,0 kW z inwerterem 1-fazowym (nr kat. 10-901100)</td>
</tr>
<tr>
<td>η - eta</td>
<td>SG-000023</td>
<td>- zestaw fotowoltaiczny ON-GRID o mocy 2,5 kW z inwerterem 3-fazowym (nr kat. 10-901101) - pompa ciepła Basic 270 z 2 wężownicami (nr kat. 09-355201) - kocioł c.o. Galaxia KWE 22 kW (nr kat. 07-222430)</td>
</tr>
<tr>
<td>θ - theta</td>
<td>SG-000024</td>
<td>- zestaw fotowoltaiczny ON-GRID o mocy 3,0 kW z inwerterem 3-fazowym (nr kat. 10-901101) - zestaw fotowoltaiczny ON-GRID o mocy 2,0 kW z inwerterem 1-fazowym (nr kat. 10-901100)</td>
</tr>
<tr>
<td>ι - iota</td>
<td>SG-000025</td>
<td>- zestaw fotowoltaiczny ON-GRID o mocy 2,5 kW z inwerterem 3-fazowym (nr kat. 10-901101) - zestaw fotowoltaiczny ON-GRID o mocy 2,0 kW z inwerterem 1-fazowym (nr kat. 10-901100)</td>
</tr>
</tbody>
</table>

Nie znalazłeś zestawu dla siebie? Skontaktuj się z doradcą technicznym GALMET i zyskaj do 5 000 zł rabatu na optymalnie dobrany, hybrydowy system grzewczy dla Twojego domu!

Przedstawione projekty instalacji są wyłącznie rozwiązaniami przykładowymi i zostały stworzone zgodnie z istniejącymi standardami. Należy również pamiętać, aby przy każdej inwestycji projekt był optymalnie dobrany, hybrydowy system grzewczy dla Twojego domu!

Urządzenia wchodzące w skład systemów hybrydowych nie podlegają standardowemu rabatowaniu i nie mogą być rozdzielane w celu dalszej sprzedaży.

Produujemy w Polsce

113
REGIONALNI DORADCY TECHNICZNO-HANDLOWI
DANE KONTAKTOWE

DZIAŁ SPRZEDAŻY:

Tomasz Maliszewski
tel. +48 77 403 45 26
korn. +48 692 096 089
sprzedaz4@galmet.com.pl
woj. śliskie, opolskie, dolnośląskie, lubuskie (cz. południowa)

Stanisław Dąbrowa
tel. +48 77 403 45 21
korn. +48 692 081 045
sprzedaz1@galmet.com.pl
woj. lubuskie (cz. północna), wielkopolskie, kujawsko-pomorskie, zachodnio-pomorskie

Mateusz Lenartowicz
tel. +48 77 403 45 22
korn. +48 692 081 857
sprzedaz2@galmet.com.pl
woj.: pomorskie, warmińsko-mazurskie, podlaskie, mazowieckie, łódzkie

Rafał Haremza
tel. +48 77 403 45 23
korn. +48 692 081 709
sprzedaz3@galmet.com.pl
woj.: lubelskie, świętokrzyskie, podkarpackie, małopolskie

Adam Tromsa
korn. +48 692 086 991
a.tromsa@galmet.com.pl

DZIAŁ WSPARCIA TECHNICZNEGO:

Doradca techniczny
ds. kolektorów słonecznych i fotowoltaiki:
Artur Bernard
tel. kom.: +48 664 947 856
tel.: +48 77 403 45 58
solar@galmet.com.pl
a.bernard@galmet.com.pl

Doradca techniczny ds. pomp ciepła:
Julia Sobaszek
tel. +48 77 403 45 56
korn. +48 784 941 146
pompyciepla@galmet.com.pl
j.sobaszek@galmet.com.pl

Doradca techniczny ds. kotłów c.o.:
Artur Adamów
tel. +48 77 403 45 65
korn. +48 883 321 066
kotly@galmet.com.pl
a.adamow@galmet.com.pl

Doradca techniczny ds. zbiorników:
Roman Balicz
tel. +48 77 403 45 64
korn. +48 883 357 787
zbiorniki@galmet.com.pl
r.balicz@galmet.com.pl

SERWIS:

tel. +48 77 403 45 30
serwis@galmet.com.pl

Formularz zgłoszeniowy 24/7 dostępny na stronie
www.galmet.com.pl/pl/serwis

DZIAŁ INWESTYCYJNY:

Kierownik działu inwestycji:
Sebastian Mamczur
tel. +48 77 403 45 55
korn. +48 664 947 852
s.mamczur@galmet.com.pl

Doradca ds. dofinansowań:
Ewelina Barton
korn. +48 692 086 899
e.barton@galmet.com.pl

DZIAŁ EKSPORTU:

Dariusz Siudmak
tel. +48 77 403 45 80
korn. +48 600 89 50 69
d.siudmak@galmet.com.pl
export@galmet.com.pl

Krzysztof Rudnicki
tel. +48 77 403 45 81
korn. +48 883 364 137
k.rudnicki@galmet.com.pl
export@galmet.com.pl

KRAJOWE CENTRUM DORADZTWA TECHNIKI GRZEWCZEJ (SALON):
Głubczyce, ul. Raciborska 1
tel. +48 692 099 112
salon@galmet.com.pl

SKLEP INTERNETOWY Z CZĘŚCIAMI:
www.sklep.galmet.com.pl
tel. +48 77 403 45 20
sklep@galmet.com.pl

JESZCZE LEPSZY PROGRAM PARTNERSKI DLA INSTALATORÓW!

Dla tych, którzy zdobędą najwyższe noty w rankingu czekają dodatkowe nagrody!

Program wspiera sodex

Zbieraj punkty, zdobywaj nagrody!